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ABSTRACT

Historical data (also called long data) holds the key to
understanding when facts are true. It is through long
data that one can understand the trends that have devel-
oped in the past, form the audit trails needed for jus-
tification, and make predictions about the future. For
searching, there is also increasing interest to develop
search capabilities over long data.

In this article, we first motivate the need to develop
a time machine for information that will help people
“look back” so as to “look forward”. We will overview
key ideas on three components (extraction, linking, and
cleaning) that we believe are central to the development
of any time machine for information. Finally, we con-
clude with our thoughts on what we believe are some in-
teresting open research problems. This article is based
on the material presented in a tutorial at VLDB 2015.

1. INTRODUCTION

“The longer you can look back, the farther
you can look forward.”
— Winston Churchill

There is general consensus that while big data are im-
portant, long data (i.e., historical data or temporal data)
are even more important [29, 48], as it provides the po-
tential to understand when facts are true and forms the
basis for audit trails needed by organizations and indi-
viduals. It is for this reason that companies use temporal
databases to provide support for rollbacks and auditing.
For Web pages, information from the Wayback machine
of the Internet Archive [30], which periodically keeps a
snapshot of most webpages on the Web, has been used
as legal evidence.

With the abundant availability of information one can
mine from the Web today, there is increasing interest to
develop capabilities to search long data on the Web, to
develop a complete understanding of the history of an
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entity (i.e., a person, a company, a music genre, a coun-
try, etc.), and to depict trends over time, based on Web
data. An example is the search for answers to the query
“Google’s CEO before Sundar Pichai”. Current search
results on Google returns articles about Sundar Pichai
and it is only after one reads through some articles about
the history of Google that one can infer that the CEO of
Google before Sundar Pichai is Larry Page.

Another compelling example to motivate the need to
understand when a fact is true comes from reports that
are filed with the U.S. Securities and Exchange Com-
mission (SEC) [20] at different times. Companies are re-
quired, by federal regulations, to file reports periodically
to SEC to disclose the stock holdings of its executives.
There are now millions of electronic filings in EDGAR
and the number of such filings is increasing over time.
Given the millions of SEC reports, how can one find out
the stock holdings of an executive during a certain pe-
riod of time? Were Ann and Bob affiliated with the same
company X during a certain time period? Or perhaps
more interestingly, did Ann purchase a significant num-
ber of shares of Company Y before it was announced
that Company X bought Company Y? Techniques for in-
tegrating and aggregating data over time have also been
explored in a number of projects [2, 5, 25, 33, 38, 40,
41, 45].

Finally, historical data provides an understanding of
what is important or trending over time. For example,
the understanding that most people believed earth was
flat versus spherical and the trending topics of discus-
sions allow tremendous opportunities for further knowl-
edge [19, 46, 47].

The task of aggregating long data into a meaningful
whole remains a largely difficult and manual task de-
spite more than a couple of decades of research in the
areas of temporal databases and data integration. The
difficulty to create a comprehensive understanding of
entities over time largely stems from the lack of (ex-
plicit) temporal data, and tools for interpreting such data
even if they were available. Ideally, we would like to
develop a time machine for information, where one can

23



easily and incrementally ingest temporal data to develop
an ever increasing understanding of entities over time,
search and query facts for a particular time period, un-
derstand trending patterns over time, and perform ana-
Iytics that would allow one to, for example, understand
the prevalent “knowledge” in the previous decade. In
this article, we describe the techniques critical in build-
ing such a time machine for information, and discuss
how far (or close) we are in achieving this goal.

The development of such a time machine would nec-
essarily involve many of the challenges that occur in
data integration [13, 17] and knowledge curation (see,
for example, [4, 15, 27]), which are notoriously diffi-
cult tasks. The data integration process often includes
the fundamental steps of extracting information about
different types of (heterogeneous) entities, transforming
and cleaning the information, and curating facts regard-
ing different aspects or properties of those entities con-
sistently together. An additional challenge today is to
perform these tasks at scale; that is, we need to collect
information from a large number of data sources, where
each source may contain lots of data, and the schemas of
the sources may be diverse in their structure and quality
or may even be unavailable. The ability to inter-operate
amongst heterogeneous data sources with varying qual-
ity is thus a key ingredient to the successful development
of this time machine.

Another key ingredient to the successful development
of such time machine is to make every step of the data
integration process time-aware. In other words, we need
the capability to understand the valid time period for
each fact. To achieve this goal, one would inevitably re-
quire text extraction rules or techniques to extract struc-
tured temporal data from unstructured and semi-structured
data sources. Furthermore, techniques need to be devel-
oped to map and transform temporal data into a desired
format before temporal entity resolution can be applied.
And finally, information about the extracted entities is
temporally integrated and conflicting information is re-
solved to arrive at an integrated archive. This process
may repeat as new datasets are discovered or when new
versions of the same datasets are available to further en-
rich the information time machine.

Outline In this article, we first look back at past work
related to (bi-)temporal databases. We discuss why new
techniques beyond (bi-)temporal databases need to be
developed to integrate and manage long data in general
(Section 2). We will then present some existing work
on three components (extraction, linking, and cleaning)
that we believe are central to the development of any
time machine for information (Sections 3-5) before we
conclude with our thoughts by looking forward on some
of the interesting open research problems (Section 6).
While one goal of this article is to disseminate the
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above described material, a parallel goal is to motivate
the reader to pursue research in the direction of manag-
ing and integrating temporal data. Ultimately, we hope
that there will be more research along these directions
to bring us closer to realizing the goal of building a time
machine for information that will record and preserve
history accurately, and to help people “look back™ and,
so as to, “look forward”.

We note that this article is based on material presented
in a tutorial at VLDB 2015 [18].

2. TEMPORAL DATABASES

The need for enterprises to track and query long data,
roll back to previous states of the database to provide au-
dit trials has led to the provision of temporal data man-
agement features in relational databases. Research in
temporal databases has a long history (see, for exam-
ple, [9, 10, 42, 43]) but the ability to create and manage
temporal tables only found its way to the SQL standard
in 2011, as part of the SQL:2011 standard. Since then,
major database vendors such as IBM DB2 10 [12], Or-
acle’s Total Recall, and Teradata [1] have also begun to
support the temporal features.

There are two primary notions of time in temporal
databases, namely, valid time (the time period during
which a tuple is true) and transaction time (where the
beginning of this time period represents when the tu-
ple and its valid time period was first recorded in the
database, and the duration of the transaction represents
the time period during which the recorded tuple and its
valid time was true). These are also known as appli-
cation time and, respectively, system time in SQL:2011.
Naturally, transaction time (or system time) can only in-
crease since the next tuple that is recorded can only oc-
cur at a later time than the previously recorded tuple.
This is in contrast with valid time, which may refer to
the past or future regardless of when it was entered into
the database.

For example, Anna was at restaurant Fleur De Lys at
12pm on March 28. Suppose this information was ex-
tracted and entered into the database on 10am March
29, the transaction time begins on 10am March 29, even
though its valid time begins earlier on 12pm March 28.
Later, we may also discover that Anna was at San Fran-
cisco’s Museum of Modern Art (MOMA) on 11lam on
March 28. Suppose this information was only deter-
mined and entered into the database on 12pm March
30, the valid time begins on March 28, 11am, while the
transaction time begins on March 30, 12noon. Each sub-
sequent fact that is entered into the database has a later
transaction time than the previous fact even though the
valid time may occur at different (out-of-order) times.
The first two records in Figure 1 illustrate the example
we just discussed. The third record shows that Anna
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Name [ Location [ When [ Known since |

Anna Fleur De Lys | Mar 28, 12pm Mar 29, 10am
Anna SF MOMA Mar 28, 11am Mar 30, 12pm
Anna | SFMOMA Mar 28, 1:15pm | Mar 30, 2pm

Figure 1: Records of locations of Anna.

was at MOMA on 1:15pm March 28 and this fact was
entered into the database on 2pm March 30.

SQL statements can be issued to record the above
events as-is with the corresponding application and sys-
tem times into a bitemporal database. However, with-
out additional application logic, these records are insuf-
ficient for the purposes of consistently integrating this
information to arrive at the understanding that Anna was
at SF MOMA from 1lam to 12noon, at Fleur De Lys
from 12noon to 1:15pm, and then back at SF MOMA
from 1:15pm onwards. Even worse, in general, the time
at which the records are entered into the database may
not even correspond to the time when the information
was known, since different pieces of information may
be derived from different data sources at different times.
The above inference of where and when is Anna at a lo-
cation is done based on the preference that information
with a later known time is preferred to information from
an earlier known time, and that Anna can only be at one
location at any point in time. With other types of pref-
erences (e.g., information from one source is preferred
over the other), other conclusions may be derived.

The above discussions point out the need for tech-
niques to consistently integrate long data that goes be-
yond what bi-temporal databases and existing data inte-
gration support. In particular, support for user-defined
preferences to decide how conflicting long information
should be resolved is needed. In fact, techniques such
as [2, 5] have taken a step in this direction to consis-
tently aggregate possibly conflicting long information
from different sources. In the next three sections, we
will present some existing work on three major compo-
nents (extraction, linking, and fusion) that are central to
the development of any end-to-end data integration and
management system for long data.

3. EXTRACTION

3.1 Techniques for conventional data

To build any type of time machine, or big data reposi-
tory, we require data. While large repositories of propri-
etary data are often hidden behind corporate firewalls,
or are available with restrictive licensing, the web is a
rich source of information and is publicly available for
use by anyone. In addition, web data provides a wide
coverage on almost any topic of interest, and is updated
constantly. The challenge is thus to extract useful data
from this fairly unstructured world. In what follows, we
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discuss some of the challenges in extracting data directly
from texts, short texts, and fairly structured web tables.

Information extraction, which refers to the task of
understanding text and extracting structured data from
texts, has been an active area of research for quite some
time [31]. Its objective is to take a sentence such as
“Anna was at restaurant Fleur De Lys on March 28, 12
noon” and extract from it structured entries that might
look like a set of triples of the form

(Anna, location, Fleur De Lys),

(Anna, on, March 28).

Notice that not all information might be succesfully
extracted in the process of extraction. For example, we
might not extract the fact that Anna was at the restaurant
at 12 noon, or that Fleur De Lys is actually a restaurant
(and not a city). So, extractions are often incomplete
by nature. The extraction task is typically further exac-
erbated by the need to consider (a) the richness of the
language and that the same fact can be expressed in a
number of different ways; and (b) processing cannot be
limited to a single sentence at a time since understanding
the semantics of a sentence often requires understanding
its context (e.g., other sentences in the same paragraph).
As an example, assume that the sentence above is fol-
lowed by the statement “She ordered pasta”. To extract
the simple fact that (Anna, ate, pasta) we need to deref-
erence “She” and understand that it refers to Anna. Suc-
cessful approaches in information extraction often rely
on machine learning [49] or on a combination of ma-
chine learning and natural language understanding tech-
niques [21].

More recently, the popularity of services such as Twit-
ter gave momentum to a new class of short text sources
that is rich in information. A distinguishing character-
istic of such short text sources is that although there is
a huge volume of data, the information content is very
small in each short text (140 characters in the case of
Twitter). On the surface, the analysis of a 140-character
tweet seems like a much easier task when compared to
the analysis of a document with many sentences. How-
ever, the simplicity of short texts is deceiving and in
fact, the lack of context often makes the analysis of short
texts significantly harder.

Consider for example two simple short texts “I like
pink songs” and “I like pink shoes”. Even though a
human might immediately understand that the former
short text is likely to refer to the songs of the artist Pink
and the latter short text refers to the fact that the author
of the text likes shoes that are pink in color, the lack
of context makes the automatic analysis of these short
texts very challenging. In addition to the lack of con-
text, part of the challenge also has to do with the fact
that short texts often lack any syntax (due to the limi-
tations in length). As a result, traditional natural lan-
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guage based techniques often fail to properly extract in-
formation, and new techniques that are customized for
the analysis of short text are necessary [28].

In a more ideal extraction scenario, one may be able
to find the data of interest in a fairly structured setting.
For example, the data of interest may exist as a web ta-
ble [6, 36]. Web tables are typically small relational
tables crawled from HTML tables on the Web. Con-
sider Anna from our example in the previous section. If
Anna is a celebrity whose sightings are tracked at some
fan web page, one can conceivably find a table like the
one shown in Figure 1 that offers a row for each fan en-
counter with Anna. While a table such as this one is
a great starting point for data extraction, there are still
significant challenges to be addressed. For one thing, it
is non-trivial to identify the data types of each column
since such tables often come either without or with am-
biguous metadata (e.g., column headings). Sometimes,
such tables do not even come with column headings.
More importantly, while structured data are designed
with explicit connections between the different parts of
the schema (e.g., foreign keys), figuring out how differ-
ent web tables relate to each other often requires tech-
niques that go beyond the extraction of column types
and understanding the text surrounding the table.

3.2 Techniques for temporal data

There is a large body of work on temporal informa-
tion extraction [37] that is pertaining to the construction
of a time-machine, since beyond extracting facts about
the world we would also like to know the time that these
facts were valid. Conceptually, there are three main
challenges in temporal information extraction, namely
(a) the identification of temporal references in the input,
(b) the mapping of a temporal reference to a time point
(or interval), and (c) the assignment of time point (or in-
terval) to a fact. In what follows, we provide a high-level
review of the first two time-related challenges.

Part of the challenge in identifying temporal refer-
ences is that time is expressed in a variety of ways in
text. So, while one can find a clear temporal reference
in the sentence “Anna was at restaurant Fleur De Lys
on March 28, 12 noon”, the following two sentences
include temporal references that are less obvious: “Last
week, Anna was at restaurant Fleur De Lys.”, and “Anna
was at restaurant Fleur De Lys.”. Notice that both the
first and second sentences have an explicit time refer-
ence (in the form of “March 28, 12 noon”, and “Last
week”), while the last sentence has an implicit time ref-
erence since the past tense of the verb implies that the
event happened some time in the past (see [24] of a more
complete list of explicit and implicit examples).

To be useful in practice, an identified time reference
must be assigned to a time point (or interval). In the ex-
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amples above, it seems fairly straighforward to assign
the “March 28, 12 noon” to a point in time, assuming
we know the year that this date is referring to. Simi-
larly, for the assignment of the reference “Last week”
we need some indication as to what is the week the text
(paragraph) was written, or in the worst case ground the
time reference to a time point based on a signal like the
document creation time (which resembles the transac-
tion time in temporal databases). Similarly, for the last
sentence we need to identify the time the text was writ-
ten (or is referring to) so that we assign a time interval
to the event that is upper-bounded by the identified time.
Not surprisingly, mapping time references to a time di-
mension is probably the most challenging part of tem-
poral information extraction. Techniques in this space
might rely on rules [44], or a combination of machine-
learning and syntactic analysis [37].

4. RECORD LINKAGE

After structured data is obtained, another major step
is to identify records that refer to the same real-world
entities. The record linkage problem refers to the fol-
lowing problem: given a set of records, each describing
an entity by its attribute values, partition the records so
that each partition contains records that refer to a dis-
tinct real-world entity.

4.1 Techniques for conventional data

Solutions to the record linkage problem typically in-
clude the following three steps [17].

1. Blocking refers to the process where blocking func-
tions are applied to partition input records into mul-
tiple smaller blocks such that records in different
blocks are very unlikely to refer to the same real-
world entity. Blocking helps reduce the number of
pairwise comparison that would otherwise be needed
in subsequent steps.

2. Pairwise matching refers to the process that com-
pares every pair of records in a block to decide if
they indeed refer to the same entity.

3. Clustering refers to the process that examines local
pairwise matching decisions to arrive at a globally
consistent decision of partitioning the records from
the same block such that each partition refers to a
distinct entity.

Among the three steps, the blocking step is performed
to achieve scalability (i.e., to handle massive data), while
the pairwise matching and clustering steps are used to
ensure the semantics of record linkage. In other words,
by blocking, one avoids unnecessary comparisons be-
tween two records in the pairwise matching and cluster-
ing steps, which determine whether or not two records
refer to the same real-world entity.
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Figure 2: Transition rate on affiliation learned
from DBLP [32].

4.2 Techniques for temporal data

Traditional linkage techniques typically reward high
similarity between attribute values, and, likewise, penal-
ize low similarity between attribute values. Such mea-
sures are not always appropriate for temporal record link-
age. This is because, as time elapses, attribute values
of an entity tend to evolve; for example, a person may
change her name after marriage, change affiliations as a
result of changing jobs, and may also change her phone
number, address, and so on. Hence, blindly penalizing
low value similarity can lead to a lot of false negatives
in general; that is, records that refer to the same entity at
different times are not matched because of value evolu-
tion. At the same time, as time elapses, different entities
are increasingly likely to share the same attribute values,
such as the shared name Adam Smith between a British
philosopher in the 18th century and a current politician
in the US. Hence, blindly rewarding high value similar-
ity can lead to a lot of false positives in general; that is,
records that refer to different entities at different times
are wrongly matched together because they happen to
share the same attribute values.

The discussions above point out that temporal records
present new challenges to the temporal record linkage
problem and new techniques are needed to perform tem-
poral record linkage.

In the next two sections, we describe two key solu-
tions for the temporal record linkage problem; one ex-
ploits pairwise matching techniques, and the other ex-
ploits clustering techniques. These techniques make cru-
cial use of the following observations about temporal
records in their solutions.

o First, entities typically evolve smoothly, and typi-
cally only a few attribute values of an entity change
at any given time.

e Second, the values of an entity do not change errat-
ically and, in particularly, they rarely change back
and forth.
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e Third, if the data set is fairly complete, records that
refer to the same real-world entity typically (though
not necessarily) observe continuity, or similarity in
time gaps between adjacent records.

4.2.1 Time decay

A key insight by Li et al. is the notion of time de-
cay [34] Time decay is often used in data analytics to re-
duce the impact of older records on the analysis and can
be used effectively to capture the impact of time elapse
on attribute-value evolution. Two types of decay, dis-
agreement decay and agreement decay, were proposed
in [34].

e Consider an attribute A and a time gap AT. The
disagreement decay of A over AT is the probability
that an entity changes its A-value within time AT
The dsiagreement decay is denoted by d7 (A, AT).

e Consider an attribute A and a time gap AT. The
agreement decay of A over AT is the probability
that the A-value is the same for two distinct entities
within time AT'. The notation we use for agreement
decay is d= (A, AT).

It is easy to see that both disagreement and agree-
ment decays are values in [0, 1], and typically monoton-
ically non-decreasing as a function of their second ar-
gument AT Intuitively, the disagreement decay is used
to reduce the penalty for value disagreement, while the
agreement decay is used to reduce the reward for value
agreement, over a long time period. More formally, this
is done by defining the pairwise similarity between two
records R and Rs as

Sim(Rl, Rg) =
EAeA’de(S(Rl.A,RQ.A),AT) * S(Rl.A,RQ.A)
ZAGAde(S(Rl.A,Rz.A),AT)

where dw 4 (s(), AT) denotes the decayed weight of at-
tribute A with value similarity s() and time gap AT =
|R1.T — Ry.T|. When the value similarity s() is low,
dwa(s(),AT) is set to wa * (1 — d7 (A, AT)); when
the value similarity s() is high, dwa(s(), AT) is set to
wa * (1 — d=(A,AT)), where w, is the non-decayed
weight of attribute A.

Li et al. [34] also describe ways to learn the disagree-
ment and agreement decays empirically from a labeled
data set. As an example, Figure 3 shows disagreement
decay and agreement decay on attribute address learned
from a data set that contains 1871 European Patent from
359 inventors in years of 1978-2003. We observe that
while inventors over different periods of time seldom
shared the same address over time, many of them have
changed their address over time.

There are two extensions for time decays. First, Chi-
ang et al. [7] define recurrence rate, which considers the
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Figure 3: Agreement (flat line) and disagreement
decay (curved line) for inventor address learned
from a European patent data set [34].

probability of the same value re-occurring for an entity
attribute. The intuition is that after a value changes, it
may change back at a future time point; for example, a
person may return to the same affiliation, may keep co-
authoring with the same authors after a period of time,
and so on. Figure 4 shows the recurrence rate on four
attributes learnt from DBLP.

Second, Li et al. [32] consider a finer-grained dis-
agreement decay, called the transition probability. In-
tuitively, the transition probability captures the likeli-
hood of a particular (type of) value transitioning to dif-
ferent other (types of) values. These probabilities vary
widely across different pairs of values. For example, it
is far more likely for someone with the title of an “Asso-
ciate Professor” to transit to the value “Full Professor”
than “Accountant”. Figure 2 shows the transition rate
between different types of values for affiliation learned
from DBLP.

4.2.2 Two-stage temporal clustering

In addition to time decay, which is used in pairwise
comparison, Li et al. [34] also propose a two-stage tem-
poral clustering strategy, where the first stage requires
high value consistency and obtains high-precision re-
sults, and then the second stage adjusts results from the
first stage to improve recall. The key intuition is that,
unlike traditional clustering techniques that are time-
agnostic, considering the time order of records can often
provide important clues for correct record linkage. The
two stages proceed as follows.

1. The first stage considers the records in temporal or-
der. It compares a record with each previously cre-
ated cluster and computes a probability of merging.
After processing all the records, it makes the clus-
tering decision to maximize the overall probability
of record-cluster matching.

2. The second stage augments the clustering results by
also comparing a record with clusters that are cre-
ated later. The comparisons take into account record
continuity and clusters are adjusted based on these
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comparisons.

There are also two extensions for the two-stage clus-
tering method. The solution proposed by Chiang et al. [8]
makes a clean cut on the two stages: the first stage,
called static stage, requires high consistency on attribute
values and does not consider time decay; the second
stage, called dynamic stage, considers time decay and
further merges clusters generated in the static stage.

In the solution proposed by Li et al. [32], the first
stage may place a record into multiple different clusters,
if it believes that the provider of the record is likely to
provide stale data. The second stage then merges clus-
ters from the first stage once it decides that the probabil-
ity of transition is high, and ignores the clusters consist-
ing of only stale records.

S. CLEANING AND FUSION

5.1 Techniques for conventional data

Data cleaning refers to the following problem: given
a snapshot of data, decide which piece of data is incor-
rect w.r.t. the ground truth and find the fix.

As shown in Figure 5, data cleaning techniques can
be classified along two dimensions. The first dimen-
sion concerns whether the data cleaning process consid-
ers only a single source or data over multiple sources.
The term data cleaning generally refers to the task of
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cleaning a single data source whereas the term data fu-
sion is generally used to refer to the task of merging and
cleaning data from multiple sources [16]. The second
dimension concerns whether the underlying technology
used for data cleaning is rule-based or learning-based.
The combinations along these two dimensions give rise
to four categories of methods.

e Rule-based data cleaning—Constraint-based data
repairing: This type of data cleaning relies on the
use of constraints, such as functional dependencies
and, more recently, CFDs (Conditional Functional
Dependencies), to specify the relationship between
data values [22]. When such relationships are vio-
lated, the data are typically cleaned (or repaired) by
finding the smallest set of changes to the data values
such that the constraints are no longer violated.

e Learning-based data cleaning—Quantitative data
cleaning: Such methods (e.g., [11, 26]) apply statis-
tical techniques to detect outliers of the data. It sug-
gests cleaning strategies such that the cleaned data
have close distribution to an ideal data set; however,
a quantitative repair is not guaranteed to be logically
consistent.

e Rule-based data fusion-Declarative data fusion:
Such methods (e.g., [3]) specify rules such as com-
puting the average value from a list of values, finding
the most popular value or the latest update to resolve
conflicting values from multiple sources.

e Learning-based data fusion-Truth discovery: Such
methods (e.g., [35]) find the truths that are consis-
tent with the real world by applying machine learn-
ing models that consider trustworthiness of sources
and copying relationships between the sources.

5.2 Techniques for temporal data

Temporal data add a new dimension, the time dimen-
sion, to the problem. The problem thus becomes the
following: given a set of temporal data, decide which
piece of data is incorrect for the claimed time point or
period of time and find the fix.

Temporal data raise two new challenges for data clean-
ing and fusion. First, as mentioned before, the true val-
ues can evolve over time; so it is critical to distinguish
between false data and out-of-date data, and to decide
the time period that a value is true. Second, there are
many causes for low-quality data: in addition to pro-
viding false and imprecise data, a previously good data
source may stop updating (a part of) data or updating
data infrequently and thus provide stale data.

To overcome these challenges, observe that (1) the

update history from data sources can give hints for changes

of the real world; for example, a source may remove
information about a restaurant because the restaurant
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is closed; and (2) certain attribute values observe par-
tial order; for example, for marry_status, value single
should occur before married in a timeline, which in turn
should occur before divorced in time.

We next describe how each category of data-cleaning
techniques are extended for temporal data. We omit the
category of learning-based data cleaning, as we are not
aware of any quantitative cleaning strategies for tempo-
ral data.

5.2.1 Rule-based data cleaning:
data currency

Fan et al. studied data currency [23] for cleaning tem-
poral data. It considers data without timestamps as in-
put, and aims at finding the up-to-date values.

The key idea of the solution is to extend conventional
database constraints with currency constraints, which
express currency relationships from the semantics of the
data. An example currency constraint is stated below:

Vs, t: s[status] =“married” At[status] =*“single”
—t <status S

This constraint states that given two tuples s and ¢
about the same entity (i.e., having the same EID), if s
provides value married for marriage status while ¢ pro-
vides value single, then s must have a more recent value
than ¢ on status.

In addition to currency constraints, their work also
considers a simple class of CFDs, called constant CFDs.
A constant CFD is a constraint that asserts an equality
to a constant value. A specification is defined as a triple
Se = (It, X,T), where I specifies existing knowledge
on partial order of tuples regarding their timestamps,
> denotes currency constraints, and I" denotes constant
CFDs.

Fan et al. [23] investigated four problems around data
currency.

e Satisfiability: Decide if a specification is valid; in
other words, whether the partial orders, the currency
constraints, and the constant CFDs have conflicts. It
is shown that this problem is NP-complete in gen-
eral.

e Implication: Decide if any other currency orders can
be implied by a given specification. It is shown that
the problem is coNP-complete in general.

e True value deduction: Decide whether true values of
an entity can be derived from a specification. Like
implication, this problem is coNP-complete in gen-
eral.

e Coverage analysis: Decide the minimum coverage
of a given specification (i.e., additional partial orders
or currency constraints to be provided) to make true
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values derivable. This problem is ¥5-complete in
general.

It is also proved that the above complexity results re-
main even if only currency constraints or only constant
CFDs are present.

Although all these problems are intractable in gen-
eral, Fan et al. [23] developed practical algorithms that
integrate inferences of data consistency and currency in
a single framework, deriving true values and finding a
minimum set of attributes that require users’ input to
find their true values.

5.2.2  Rule-based data fusion:
preference-aware union

Alexe et al. [2] propose a preference-aware union op-
erator for fusing temporal data from multiple data sources.
The intended use of the preference-aware union opera-
tor is typically at the final step of an entity integration
workflow, where the outcome of this step is the set of
integrated entity profiles derived by aggregating infor-
mation from multiple sources.

Intuitively, the operator takes as input temporal data
(from multiple sources) and resolves temporal conflicts
that may occur in the data according to a given set of
constraints and user-specified preference rules. For ex-
ample, a constraint may assert that a person can have
at most one affiliation at any time point, and a conflict
arises if the input data corroborates there is more than
one affiliation at some time point. A preference rule
may state that one should prefer the values from a later
timestamp or it may specify that one should prefer val-
ues from one source over another. With the given con-
straints and preference rules, the operator will then re-
solve a conflict, to the extent possible, to conclude what
should be the affiliation at the time points when conflicts
occur according to the specified preferences.

In the event that not all conflicts can be resolved through
preferences, one can then enumerate each possible con-
sistent interpretation of the result returned by the oper-
ator at a given time point through a polynomial-delay
algorithm. A key property of the solution is that the op-
erator produces the same integrated outcome, modulo
representation of time, regardless of the order in which
data sources are integrated.

5.2.3 Learning-based data fusion:
temporal data fusion

Temporal data fusion takes data with timestamps as
input, and tries to decide not only the currently correct
values, but also the correct values in the history and
their valid time period.

Specifically, consider a set D of data items, each de-
scribing the attribute of an entity, such as affiliation of a
person. A data item is associated with a value at each
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particular time ¢ and can be associated with different
values at different times. The life span of a data item
D is defined as a sequence of transitions, each asso-
ciated with a value change regarding D at a particular
time point. On the other hand, consider a set S of data
sources, each providing values for data items in D and
can change the data over time. Data provided by the
sources are observed at different times; by comparing
an observation with its previous observation, a series of
updates can be inferred. Given D and S, the temporal
data fusion problem computes the life span of each data
item in D.

The solutions to this problem typically contains two
major parts. The first component computes quality met-
rics of the sources for temporal data. The second com-
ponent conducts inferences to decide the lifespan of each
data item.

Source quality: For conventional static data, source
quality is typically measured by its accuracy [35]. The
metrics are far more complex for the dynamic case [14].
Ideally, a high-quality source should provide a new value
for a data item if and only if, and right after, the value
becomes true. These three conditions are captured by
three measures: (a) the coverage of a source measures
the percentage of all transitions of different data items
that it captures (by updating to the correct value); (b)
the exactness is the complement of the percentage of
transitions that the source mis-captures (by providing a
wrong value); and (c) the freshness is a function of time
AT, measuring among the captured transitions, the per-
centage that are captured within time AT. These three
measures are orthogonal and collectively referred to as
the CEF-measure.

Inference: There are two inference approaches to de-
cide the lifespan of a data item. The first inference ap-
proach uses Bayesian analysis [14]. Consider a data
item D € D. To discover its life span, both the time
and the value of each transition need to be decided. The
Bayesian analysis is based on the CEF-measures of D’s
providers.

1. First, decide the value of D at a beginning time point.

2. Then, find for D’s next transition the most likely
time point and the most likely value, and repeat this
process until it is decided that there is no more tran-
sition.

The second approach applies the Markov model [39].
As in the aforementioned Bayesian analysis, the Markov
model considers the delay between real-world changes
and source observation, and the delay between source
observation and source update. However, there are two
differences. First, the Markov model additionally en-
codes domain knowledge such as the partial order be-
tween values for a particular attribute. Second, it as-
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sumes that the data contains only minor errors such as
mis-spellings, and ignores possible erroneous data.

Finally, note that there can be copying relationships
between the sources and the copying relationships may
even change over time. Dong ef al. [14] describe how
to apply a Hidden Markov Model model to find such
evolving relationships.

6. LOOKING FORWARD

There are many problems related to the extraction and
integration of temporal data that are yet to be solved.

First, the Web is a rich source of information. It is
possible to extract information from the Web, connect
the dots, and recover the history of an entity. For exam-
ple, by extracting information about the talks, tweets,
or even resumes and home pages, one can build a pro-
file of the affiliation (and even location) of a person over
time. How can one automatically find the relevant web
pages and tweets? How can one automatically ingest
these sources of information and combine the temporal
information for different attributes?

Second, as it is already challenging to build history
for a single entity, it is even more challenging to build
history for collective entities, such as the history of Rome,
the history of World War II, and the history of rock mu-
sic. The key here is to identify relevant single entities
such as people and events, rank them according to their
importance regarding the collective entity, and build the
history taking into account the time dimension.

Third, as the facts for an entity are evolving over time,
people’s perspective on the entity can also evolve. For
example, people used to believe that the earth is flat, and
it is only in the recent two centuries that people started
to believe that human evolved from apes. Distinguishing
the fact changes and the perspective changes proposes
new challenges in managing temporal data.

Finally, while there is already substantial body of work
on temporal text extraction and temporal entity resolu-
tion, earlier foundational work on mapping and data ex-
change, conflict resolution, and query answering in in-
consistent and incomplete databases have been largely
time-agnostic. It will be desirable to develop a prin-
cipled framework for managing inconsistent temporal
data and managing incompleteness (that may change with
time) in temporal data.
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