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Abstract This paper reports our first set of results on
managing uncertainty in data integration. We posit that
data-integration systems need to handle uncertainty at
three levels and do so in a principled fashion. First, the
semantic mappings between the data sources and the me-
diated schema may be approximate because there may
be too many of them to be created and maintained or
because in some domains (e.g., bioinformatics) it is not
clear what the mappings should be. Second, the data
from the sources may be extracted using information
extraction techniques and so may yield erroneous data.
Third, queries to the system may be posed with keywords
rather than in a structured form.

As a first step to building such a system, we introduce
the concept of probabilistic schema mappings and ana-
lyze their formal foundations. We show that there are two
possible semantics for such mappings: by-table semantics
assumes that there exists a correct mapping but we do
not know what it is; by-tuple semantics assumes that the
correct mapping may depend on the particular tuple in
the source data. We present the query complexity and
algorithms for answering queries in the presence of prob-
abilistic schema mappings, and we describe an algorithm
for efficiently computing the top-k answers to queries in
such a setting. Finally, we consider using probabilistic
mappings in the scenario of data exchange.
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1 Introduction

Data integration and exchange systems offer a uniform
interface to a multitude of data sources and the ability to
share data across multiple systems. These systems have
recently enjoyed significant research and commercial suc-
cess [18,20]. Current data integration systems are essen-
tially a natural extension of traditional database systems
in that queries are specified in a structured form and data
are modeled in one of the traditional data models (rela-
tional, XML). In addition, the data integration system
has exact knowledge of how the data in the sources map
to the schema used by the data integration system.

We argue that as the scope of data integration ap-
plications broadens, such systems need to be able to
model uncertainty at their core. Uncertainty can arise
for multiple reasons in data integration. First, the se-
mantic mappings between the data sources and the me-
diated schema may be approximate. For example, in an
application like Google Base [16] that enables anyone
to upload structured data, or when mapping millions of
sources on the deep web [25], we cannot imagine specify-
ing exact mappings. In some domains (e.g., bioinformat-
ics), we do not necessarily know what the exact map-
ping is. Second, data are often extracted from unstruc-
tured sources using information extraction techniques.
Since these techniques are approximate, the data ob-
tained from the sources may be uncertain. Finally, if the
intended users of the application are not necessarily fa-
miliar with schemata, or if the domain of the system is
too broad to offer form-based query interfaces (such as
web forms), we need to support keyword queries. Hence,
another source of uncertainty is the transformation be-
tween keyword queries and a set of candidate structured
queries.

Dataspace Support Platforms [19] envision data inte-
gration systems where sources are added with no effort
and the system is constantly evolving in a pay-as-you-go
fashion to improve the quality of semantic mappings and
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query answering. Enabling data integration with uncer-
tainty is a key technology to supporting dataspaces.

This paper takes a first step towards the goal of data
integration with uncertainty. We first describe how the
architecture of such a system differs from a traditional
one (Section 2). At the core, the system models tuples
and semantic mappings with probabilities associated with
them. Query answering ranks answers and typically tries
to obtain the top-k results to a query. These changes lead
to a requirement for a new kind of adaptivity in query
processing.

We then focus on one core component of data integra-
tion with uncertainty, namely probabilistic schema map-
pings (Section 3). Semantic mappings are the component
of a data integration system that specify the relation-
ship between the contents of the different sources. The
mappings enable the data integration to reformulate a
query posed over the mediated schema into queries over
the sources [17,22]. We introduce probabilistic schema
mappings, and describe how to answer queries in their
presence.

We define probabilistic schema mapping as a set of
possible (ordinary) mappings between a source schema
and a target schema, where each possible mapping has an
associated probability. We begin by considering a simple
class of mappings, where each mapping describes a set of
correspondences between the attributes of a source table
and the attributes of a target table. We argue that there
are two possible interpretations of probabilistic schema
mappings. In the first, which we formalize as by-table se-
mantics, we assume there exists a single correct mapping
between the source and the target, but we do not know
which one it is. In the second, called by-tuple semantics,
the correct mapping may depend on the particular tuple
in the source to which it is applied. In both cases, the se-
mantics of query answers are a generalization of certain
answers [1] for data integration systems.

We describe algorithms for answering queries in the
presence of probabilistic schema mappings and then ana-
lyze the computational complexity of answering queries
(Section 4). We show that the data complexity of an-
swering queries in the presence of probabilistic mappings
is PTIME for by-table semantics and #P-complete for
by-tuple semantics. We identify a large subclass of real-
world queries for which we can still obtain all the by-
tuple answers in PTIME. We then describe algorithms
for finding the top-k answers to a query (Section 5).

The size of a probabilistic mapping may be quite
large, since it essentially enumerates a probability distri-
bution by listing every combination of events in the prob-
ability space. In practice, we can often encode the same
probability distribution much more concisely. Our next
contribution (Section 6) is to identify two concise rep-
resentations of probabilistic mappings for which query
answering can be performed in PTIME in the size of the
mapping. We also examine the possibility of representing
a probabilistic mapping as a Bayes Net, but show that

query answering may still be exponential in the size of a
Bayes Net representation of a mapping.

We then consider using probabilistic mappings in the
scenario of data exchange (Section 7), where the goal is
to create an instance of the target schema that is con-
sistent with the data in the sources. We show that we
can create a probabilistic database representing a core
universal solution in polynomial time. As in the case of
non-probabilistic mappings, the core universal solution
can be used to find all the answers to a given query.
This section also shows the close relationship between
probabilistic databases and probabilistic schema map-
pings. In addition, we study some of the basic properties
of probabilistic schema mappings: mapping composition
and inversion (Section 8).

Finally, we consider several more powerful mapping
languages, such as complex mappings, where the corre-
spondences are between sets of attributes, and condi-
tional mappings, where the mapping is conditioned on a
property of the tuple to which it is applied (Section 9).

This article is an extended version of a previous con-
ference paper [9]. The material in Sections 7 and 8 is new,
as are the proofs of all the formal results. As follow-up
work, [32] describes how to create probabilistic mappings
and build a self-configuring data integration system. [32]
has also reported experimental results on real-world data
sets collected from the Web, showing that applying a
probabilistic model in data integration enables produc-
ing high-quality query answers with no human interven-
tion.

2 Overview of the System

This section describes the requirements from a data inte-
gration system that supports uncertainty and the overall
architecture of the system. We frame our specific contri-
butions in the context of this architecture.

2.1 Uncertainty in data integration

A data integration system needs to handle uncertainty
at three levels.

Uncertain schema mappings: Data integration sys-
tems rely on schema mappings for specifying the seman-
tic relationships between the data in the sources and the
terms used in the mediated schema. However, schema
mappings can be inaccurate. In many applications it is
impossible to create and maintain precise mappings be-
tween data sources. This can be because the users are
not skilled enough to provide precise mappings, such as
in personal information management [8], because people
do not understand the domain well and thus do not even
know what correct mappings are, such as in bioinformat-
ics, or because the scale of the data prevents generating
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Fig. 1 Architecture of a data-integration system that han-
dles uncertainty.

and maintaining precise mappings, such as in integrat-
ing data of the web scale [25]. Hence, in practice, schema
mappings are often generated by semi-automatic tools
and not necessarily verified by domain experts.

Uncertain data: By nature, data integration systems
need to handle uncertain data. One reason for uncer-
tainty is that data are often extracted from unstructured
or semi-structured sources by automatic methods (e.g.,
HTML pages, emails, blogs). A second reason is that
data may come from sources that are unreliable or not
up to date. For example, in enterprise settings, it is com-
mon for informational data such as gender, racial, and
income level to be dirty or missing, even when the trans-
actional data is precise.

Uncertain queries: In some data integration applica-
tions, especially on the web, queries will be posed as key-
words rather than as structured queries against a well de-
fined schema. The system needs to translate these queries
into some structured form so they can be reformulated
with respect to the data sources. At this step, the system
may generate multiple candidate structured queries and
have some uncertainty about which is the real intent of
the user.

2.2 System architecture

Given the previously discussed requirements, we describe
the architecture of a data integration system that man-
ages uncertainty at its core. We describe the system by
contrasting it to a traditional data integration system.

The first and most fundamental characteristic of this
system is that it is based on a probabilistic data model.
This characteristic means two things. First, as we pro-
cess data in the system we attach probabilities to each
tuple. Second, and the focus of this paper, we associate
schema mappings with probabilities, modeling the un-
certainty about the correctness of the mappings. We use
these probabilities to rank answers.

Second, whereas traditional data integration systems
begin by reformulating a query onto the schemas of the

data sources, a data integration system with uncertainty
needs to first reformulate a keyword query into a set
of candidate structured queries. We refer to this step as
keyword reformulation. Note that keyword reformulation
is different from techniques for keyword search on struc-
tured data (e.g., [21,2]) in that (a) it does not assume
access to all the data in the sources or that the sources
support keyword search, and (b) it tries to distinguish
different structural elements in the query in order to pose
more precise queries to the sources (e.g., realizing that
in the keyword query “Chicago weather”, “weather” is
an attribute label and “Chicago” is an instance name).
That being said, keyword reformulation should benefit
from techniques that support answering keyword search
on structured data.

Third, the query answering model is different. Instead
of necessarily finding all answers to a given query, our
goal is typically to find the top-k answers, and rank these
answers most effectively.

The final difference from traditional data integration
systems is that our query processing will need to be more
adaptive than usual. Instead of generating a query an-
swering plan and executing it, the steps we take in query
processing will depend on results of previous steps. We
note that adaptive query processing has been discussed
quite a bit in data integration [23], where the need for
adaptivity arises from the fact that data sources did not
answer as quickly as expected or that we did not have
accurate statistics about their contents to properly or-
der our operations. In our work, however, the goal for
adaptivity is to get the answers with high probabilities
faster.

The architecture of the system is shown in Figure 1.
The system contains a number of data sources and a me-
diated schema. When the user poses a query ), which
can be either a structured query on the mediated schema
or a keyword query, the system returns a set of answer tu-
ples, each with a probability. If Q is a keyword query, the
system first performs keyword reformulation to translate
it into a set of candidate structured queries on the medi-
ated schema. Otherwise, the candidate query is @ itself.

Consider how the system answers the candidate queries,
and assume the queries will not involve joins over multi-
ple sources. For each candidate structured query Qo and
a data source S, the system reformulates Q¢ according to
the schema mapping (which can be uncertain) between
S’s schema and the mediated schema, sends the refor-
mulated query (or queries) to S, retrieving the answers.

If the user asks for all the answers to the query, then
the reformulated query is typically a query with grouping
and aggregation, because the semantics of answers re-
quire aggregating the probabilities of answers from mul-
tiple sources. If S does not support grouping or aggrega-
tion, then grouping and aggregation needs be processed
in the integration system.

If the user asks for top-k answers, then query process-
ing is more complex. The system reformulates the query
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into a set of queries, uses a middle layer to decide at
runtime which queries are critical to computing the top-
k answers, and sends the appropriate queries to S. Note
that we may need several iterations, where in each it-
eration we decide which are the promising reformulated
queries to issue, and then retrieving answers. Further-
more, the system can even decide which data sources are
more relevant and prioritize the queries to those data
sources. Finally, if the data in the sources are uncertain,
then the sources will return answers with probabilities
attached to them.

After receiving answers from different data sources,
the system combines them to get one single set of answer
tuples. For example, if the data sources are known to be
independent of each other, and we obtain tuple ¢ from
n data sources with probabilities p1, ..., p, respectively,
then in the final answer set ¢ has probability 1—II7" ; (1—
p;). If we know that some data sources are duplicates
or extensions of others, a different combination function
needs to be used.

2.3 Handling uncertainty in mappings

As a first step towards developing such a data integration
system, we introduce in this paper probabilistic schema
mappings, and show how to answer queries in their pres-
ence. Before the formal discussion, we illustrate the main
ideas with an example.

Ezxample 1 Consider a data source S, which describes a
person by her email address, current address, and per-
manent address, and the mediated schema T', which de-
scribes a person by her name, email, mailing address,
home address and office address:

S=(pname, email-addr, current-addr, permanent-addr)
T=(name, email, mailing-addr, home-addr, office-addr)

A semi-automatic schema-mapping tool may gener-
ate three possible mappings between S and 7', assigning
each a probability. Whereas the three mappings all map
pname to name, they map other attributes in the source
and the target differently. Figure 2(a) describes the three
mappings using sets of attribute correspondences. For ex-
ample, mapping m; maps pname to name, email-addr to
email, current-addr to mailing-addr, and permanent-addr
to home-addr. Because of the uncertainty about which
mapping is correct, we consider all of these mappings in
query answering.

Suppose the system receives a query @) formulated us-
ing the mediated schema and asking for people’s mailing
addresses:

Q: SELECT mailing-addr FROM T

Using the possible mappings, we can reformulate @)
into different queries:

Q1: SELECT current-addr FROM S
Q2: SELECT permanent-addr FROM S
Q3: SELECT email-addr FROM S

If the user requires all possible answers, the system
generates a single aggregation query based on @)1, @2 and
Q@3 to compute the probability of each returned tuple,
and sends the query to the data source. Suppose the
data source contains a table Dg as shown in Figure 2(b),
the system will retrieve four answer tuples, each with a
probability, as shown in Figure 2(c).

If the user requires only the top-1 answer (i.e., the an-
swer tuple with the highest probability), the system de-
cides at runtime which reformulated queries to execute.
For example, after executing (01 and @5 at the source,
the system can already conclude that (‘Sunnyvale’) is the
top-1 answer and can skip query Q3.

2.4 Source of probabilities

A critical issue in any system that manages uncertainty
is whether we have a reliable source of probabilities.
Whereas obtaining reliable probabilities for such a sys-
tem is one of the most interesting areas for future re-
search, there is quite a bit to build on. For keyword re-
formulation, it is possible to train and test reformulators
on large numbers of queries such that each reformula-
tion result is given a probability based on its performance
statistics. For information extraction, current techniques
are often based on statistical machine learning meth-
ods and can be extended to compute probabilities of
each extraction result. Finally, in the case of schema
matching, it is standard practice for schema matchers
to also associate numbers with the candidates they pro-
pose. The issue here is that the numbers are meant only
as a ranking mechanism rather than true probabilities.
However, as schema matching techniques start looking at
a larger number of schemas, one can imagine ascribing
probabilities (or estimations thereof) to their measures.
Techniques on generating probabilistic mappings from
schema matching results are presented in [32].

3 Probabilistic Schema Mapping

In this section we formally define the semantics of proba-
bilistic schema mappings and the query answering prob-
lems we consider. Our discussion is in the context of the
relational data model. A schema contains a finite set of
relations. Each relation contains a finite set of attributes
and is denoted by R = (ry,...,r,). An instance Dg of
R is a finite set of tuples, where each tuple associates a
value with each attribute in the schema.

We consider select-project-join (SPJ) queries in SQL.
Note that answering such queries is in PTIME in the size
of the data.
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Possible Mapping Prob
my = {(pname, name), (email-addr, email), 0.5
(current-addr, mailing-addr), (permanent-addr, home-addr)} )
My = {(pname, name), (email-addr, email), 0.4
(permanent-addr, mailing-addr), (current-addr, home-addr)} '
ma = {(pname, name), (email-addr, mailing-addr), 0.1
(current-addr, home-addr) }

@
pname | email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale
(b)
Tuple (mailing-addr) | Prob
("Sunnyvale”) 0.9
('Mountain View’) 0.5
(’alice@’) 0.1
("bob@’) 0.1
(c)

Fig. 2 The running example: (a) a probabilistic schema mapping between S and T; (b) a source instance Dg; (c) the answers

of @ over Dgs with respect to the probabilistic mapping.

3.1 Schema mappings

We begin by reviewing non-probabilistic schema map-
pings. The goal of a schema mapping is to specify the
semantic relationships between a source schema and a
target schema. We refer to the source schema as S, and
a relation in S as S = (s1,...,5.,). Similarly, we re-

fer to the target schema as 7', and a relation in 7" as
T={t1,...,tn).

We consider a limited form of schema mappings that
are also referred to as schema matching in the liter-
ature [30]. Specifically, a schema matching contains a
set of attribute correspondences. An attribute correspon-
dence is of the form ¢;; = (s;,t;), where s; is a source
attribute in the schema S and t; is a target attribute in
the schema T'. Intuitively, c;; specifies that there is a rela-
tionship between s; and ¢;. In practice, a correspondence
also involves a function that transforms the value of s;
to the value of ¢;. For example, the correspondence (c-
degree, temperature) can be specified as temperature=c-
degree x1.84+32, describing a transformation from Celsius
to Fahrenheit. These functions are irrelevant to our dis-
cussion, and therefore we omit them. We consider this
class of mappings because they already expose many of
the novel issues involved in probabilistic mappings and
because they are quite common in practice. We also note
that many of the concepts we define apply to a broader
class of mappings, which we will discuss in detail in Sec-
tion 4.1.

Formally, we define relation mappings and schema
mappings as follows.

Definition 1 (Schema Mapping) Let S and T be
relational schemas. A relation mapping M is a triple
(S,T,m), where S is a relation in S, T is a relation in

T, and m is a set of attribute correspondences between
S and T.

When each source and target attribute occurs in at
most one correspondence in m, we call M a one-to-one
relation mapping.

A schema mapping M is a set of one-to-one relation
mappings between relations in S and in T, where every
relation in either S or T appears at most once. d

A pair of instances Dg and Dr satisfies a relation
mapping m if for every source tuple t, € Dg, there exists
a target tuple t; € Dy, such that for every attribute
correspondence (s,t) € m, the value of attribute s in ¢4
is the same as the value of attribute ¢ in ;.

Example 2 Consider the mappings in Example 1. The
source database in Figure 2(b) (repeated in Figure 3(a))
and the target database in Figure 3(b) satisfy m;. O

3.2 Probabilistic schema mappings

Intuitively, a probabilistic schema mapping describes a
probability distribution of a set of possible schema map-
pings between a source schema and a target schema.

Definition 2 (Probabilistic Mapping) Let S and T
be relational schemas. A probabilistic mapping (p-mapping),
pM, is a triple (S, T, m), where S € S, T € T, and m is
a set {(mq, Pr(my)),..., (my, Pr(my))}, such that

— for i € [1,1], m; is a one-to-one mapping between S
and T, and for every 4,5 € [1,1], i # j = m; # m,.
— Pr(m;) €[0,1] and Y>'_, Pr(m;) = 1.

A schema p-mapping, W,ﬁis a set of p-mappings be-
tween relations in S and in 7', where every relation in
either S or T appears in at most one p-mapping. O

We refer to a non-probabilistic mapping as an ordi-
nary mapping. A schema p-mapping may contain both
p-mappings and ordinary mappings. Example 1 shows a
p-mapping (see Figure 2(a)) that contains three possible
mappings.
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pname | email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale
@
name | email mailing-addr home-addr | office-addr
Alice | alice@ | Mountain View | Sunnyvale office
Bob | bob@ Sunnyvale Sunnyvale office
(b)
name | email | mailing-addr home-addr office-addr
Alice | alice@ Sunnyvale Mountain View office
Bob email bob@ Sunnyvale office
(c
Tuple (mailing-addr) | Prob Tuple (mailing-addr) | Prob
("Sunnyvale’) 0.9 ("Sunnyvale’) 0.94
("Mountain View’) 0.5 ("Mountain View’) 0.5
(Calice@’) 0.1 (’alice@’) 0.1
(’bob@”) 0.1 ("bob@”) 0.1

(d)

()

Fig. 3 Example 3: (a) a source instance Dg; (b) a target instance that is by-table consistent with Dg and mi; (c) a target
instance that is by-tuple consistent with Dg and < mz, ms >; (d) Q****(Ds); (e) Q*P'¢(Ds).

3.3 Semantics of probabilistic mappings

Intuitively, a probabilistic schema mapping models the
uncertainty about which of the mappings in pM is the
correct one. When a schema matching system produces a
set of candidate matches, there are two ways to interpret
the uncertainty: (1) a single mapping in pM is the cor-
rect one and it applies to all the data in S, or (2) several
mappings are partially correct and each is suitable for a
subset of tuples in S, though it is not known which map-
ping is the right one for a specific tuple. Example 1 illus-
trates the first interpretation and query rewriting under
this interpretation. For the same example, the second in-
terpretation is equally valid: some people may choose to
use their current address as mailing address while others
use their permanent address as mailing address; thus, for
different tuples we may apply different mappings, so the
correct mapping depends on the particular tuple.

This paper analyzes query answering under both in-
terpretations. We refer to the first interpretation as the
by-table semantics and to the second one as the by-tuple
semantics of probabilistic mappings. We are not trying to
argue for one interpretation over the other. The needs of
the application should dictate the appropriate semantics.
Furthermore, our complexity results, which will show ad-
vantages to by-table semantics, should not be taken as
an argument in the favor of by-table semantics.

We next define query answering with respect to p-
mappings in detail and the definitions for schema p-
mappings are the obvious extensions. Recall that given
a query and an ordinary mapping, we can compute cer-
tain answers to the query with respect to the mapping.
Query answering with respect to p-mappings is defined
as a natural extension of certain answers, which we next
review.

A mapping defines a relationship between instances
of S and instances of T that are consistent with the

mapping.

Definition 3 (Consistent Target Instance) Let M =
(S,T,m) be a relation mapping and Dg be an instance
of S.

An instance D of T is said to be consistent with Dg
and M, if for each tuple t; € Dg, there exists a tuple
t; € Dp, such that for every attribute correspondence
(as,at) € m, the value of ay in ts is the same as the
value of a; in t;. O

For a relation mapping M and a source instance Dg,
there can be an infinite number of target instances that
are consistent with Dg and M. We denote by Tar(Dg)
the set of all such target instances. The set of answers
to a query @ is the intersection of the answers on all in-
stances in Tar pr(Dg). The following definition is from [1].

Definition 4 (Certain Answer) Let M = (S,T,m)
be a relation mapping. Let @) be a query over T and let
Dg be an instance of S.

A tuple t is said to be a certain answer of QQ with re-
spect to Dg and M, if for every instance Dy € Tarp(Dyg),
te Q(DT) |

By-table semantics: We now generalize these notions
to the probabilistic setting, beginning with the by-table
semantics. Intuitively, a p-mapping pM describes a set of
possible worlds, each with a possible mapping m € pM.
In by-table semantics, a source table can fall in one of
the possible worlds; that is, the possible mapping associ-
ated with that possible world applies to the whole source
table. Following this intuition, we define target instances
that are consistent with the source instance.



Data Integration with Uncertainty

Definition 5 (By-table Consistent Instance) Let
pM = (S,T,m) be a p-mapping and Dg be an instance
of S.

An instance Dr of T is said to be by-table consistent
with Dg and pM, if there exists a mapping m € m such
that Dg and D7 satisfy m. O

Given a source instance Dg and a possible mapping
m € m, there can be an infinite number of target in-
stances that are consistent with Dg and m. We denote
by Tar,,(Dg) the set of all such instances.

In the probabilistic context, we assign a probability to
every answer. Intuitively, we consider the certain answers
with respect to each possible mapping in isolation. The
probability of an answer ¢ is the sum of the probabilities
of the mappings for which ¢ is deemed to be a certain
answer. We define by-table answers as follows:

Definition 6 (By-table Answer) Let pM = (S,T,m)
be a p-mapping. Let Q be a query over T and let Dg be
an instance of S.

Let ¢ be a tuple. Let m(t) be the subset of m, such
that for each m € m(t) and for each Dy € Tar,,(Dg),
t € Q(Dr).

Let p = Emem(t) Pr(m). If p > 0, then we say (¢,p)
is a by-table answer of QQ with respect to Dg and pM . [

By-tuple semantics: If we follow the possible-world
notions, in by-tuple semantics, different tuples in a source
table can fall in different possible worlds; that is, different
possible mappings associated with those possible worlds
can apply to the different source tuples.

Formally, the key difference in the definition of by-
tuple semantics from that of by-table semantics is that
a consistent target instance is defined by a mapping se-
quence that assigns a (possibly different) mapping in m
to each source tuple in Dg. (Without losing generality,
in order to compare between such sequences, we assign
some order to the tuples in the instance).

Definition 7 (By-tuple Consistent Instance) Let
pM = (S,T,m) be a p-mapping and let Dg be an in-
stance of S with d tuples.

An instance Dr of T is said to be by-tuple consistent
with Dg and pM, if there is a sequence (m!,...,m9),
where d is the number of tuples in Dg, and for every
1<i<d,

— m' € m, and

— for the i*" tuple of Dg, t;, there exists a target tuple
t. € Dr such that for each attribute correspondence
(as,a;) € m*, the value of a, in t; is the same as the
value of a; in ¢} . O

Given a mapping sequence seq = (m!,...,m%), we
denote by Tars.q(Dg) the set of all target instances that
are consistent with Dg and seq. Note that if Dr is by-
table consistent with Dg and m, then D is also by-tuple

consistent with Dg and a mapping sequence in which
each mapping is m.

We can think of every sequence of mappings seq =
(m',...,m?) as a separate event whose probability is
Pr(seq) = II&, Pr(m?). (In Section 9 we relax this in-
dependence assumption and introduce conditional map-
pings.) If there are | mappings in pM, then there are [%
sequences of length d, and their probabilities add up to
1. We denote by seq,(pM) the set of mapping sequences
of length d generated from pM.

Definition 8 (By-tuple Answer) Let pM = (S, T, m)
be a p-mapping. Let @ be a query over T' and Dg be an
instance of S with d tuples.

Let ¢ be a tuple. Let Seg(¢) be the subset of seq,(pM),
such that for each seq € 3seq(t) and for each Dp €
Tarseq(Ds), t € Q(Dr).

Let p = Zseqe@(t) Pr(seq). If p > 0, we call (¢,p) a
by-tuple answer of Q with respect to Dg and pM. O

The set of by-table answers for @) with respect to Dg
is denoted by Q'*"'¢(Dg) and the set of by-tuple answers
for Q with respect to Dg is denoted by Q*“P'¢(Dyg).

Ezample 8 Consider the p-mapping pM, the source in-
stance Dg, and the query @ in the motivating example.

In by-table semantics, Figure 3(b) shows a target
instance that is consistent with Dg (repeated in Fig-
ure 3(a)) and possible mapping m;. Figure 3(d) shows
the by-table answers of Q with respect to Dg and pM. As
an example, for tuple ¢ =(‘Sunnyvale’), we have m(t) =
{m1, ma}, so the possible tuple (‘Sunnyvale’, 0.9) is an
answer.

In by-tuple semantics, Figure 3(c) shows a target in-
stance that is by-tuple consistent with Dg and the map-
ping sequence < mg,mg >. Figure 3(e) shows the by-
tuple answers of ) with respect to Dg and pM. Note
that the probability of tuple t=("Sunnyvale’) in the by-
table answers is different from that in the by-tuple an-
swers. We describe how to compute the probabilities in
detail in the next section. O

4 Complexity of Query Answering

This section considers query answering in the presence of
probabilistic mappings. We describe algorithms for query
answering and study the complexity of query answering
in terms of the size of the data (data complezity) and the
size of the p-mapping (mapping complexity). We note
that the number of possible mappings in a p-mapping
can be exponential in the number of source or target at-
tributes; we discuss more compressive representations of
p-mappings in Section 6. We also consider cases in which
we are not interested in the actual probability of an an-
swer, just whether or not a tuple is a possible answer.
We show that when the schema is fixed, returning
all by-table answers is in PTIME for both complexity
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measures, whereas returning all by-tuple answers in gen-
eral is #P-complete with respect to the data complex-
ity. Recall that #P is the complexity class of some hard
counting problems (e.g., counting the number of vari-
able assignments that satisfy a Boolean formula). It is
believed that a #P-complete problem cannot be solved
in polynomial time, unless P = N P. We show that com-
puting the probabilities is the culprit here: even deciding
the probability of a single answer tuple under by-tuple
semantics is already #P-complete, whereas computing
all by-tuple answers without returning the probabilities
is in PTIME. Finally, we identify a large subclass of com-
mon queries where returning all by-tuple answers with
their probabilities is still in PTIME.

We note that our complexity results are for ordinary
databases (i.e., deterministic data). Query answering on
probabilistic data in itself can be #P-complete [33] and
thus query answering on probabilistic data with respect
to p-mappings is at least #P-hard. Extending our results
for probabilistic data is rather involving and we leave it
for future work.

4.1 By-table query answering

In the case of by-table semantics, answering queries is
conceptually simple. Given a p-mapping pM = (S, T, m)
and an SPJ query ), we can compute the certain answers
of @ under each of the mappings m € m. We attach
the probability Pr(m) to every certain answer under m.
If a tuple is an answer to ) under multiple mappings
in m, then we add up the probabilities of the different
mappings.

Algorithm BYTABLE takes as input an SPJ query Q)
that mentions the relations T4, ...,7T; in the FROM clause.
Assume that we have the p-mapping pM; associated with
the table T;. The algorithm proceeds as follows.

Step 1: We generate the possible reformulations of @ (a
reformulation query computes all certain answers when
executed on the source data) by considering every com-
bination of the form (m!, ..., m!), where m® is one of the
possible mappings in pM;. Denote the set of reformula-
tions by @, ..., Q}. The probability of a reformulation

Q' = (m',...,ml)is Hl_, Pr(m?).

Step 2: For each reformulation Q’, retrieve each of the
unique answers from the sources. For each answer ob-
tained by Q] U ... U Qy, its probability is computed by
summing the probabilities of the @’’s in which it is re-
turned.

Importantly, note that it is possible to express both
steps as an SQL query with grouping and aggregation.
Therefore, if the underlying sources support SQL, we can
leverage their optimizations to compute the answers.

With our restricted form of schema mapping, the al-
gorithm takes time polynomial in the size of the data

Tuple (mailing-addr) [ Pr

(’Sunnyvale’) 0.94 Tuple (mailing-addr) | Pr

("Mountain View’) 0.5 ("Sunnyvale’) 0.8

(alice@’) 0.1 (Mountain View’) 0.8
(’bob@”) 0.1 (b)

(a)
Fig. 4 Example 4: (a) Q'"?'*(D) and (b) QL“*'*(D).

and the mappings. We thus have the following complex-
ity result. We give full proofs for results in this paper in
the appendix.

Theorem 1 Let pM be a schema p-mapping and let Q
be an SPJ query.

Answering Q with respect to pM in by-table seman-
tics is in PTIME in the size of the data and the mapping.
O

This result holds for more general mappings, as we
explain next.

GLAYV mappings: The common formalism for schema
mappings, GLAV, is based on expressions of the form

m: Vx(p(x) — Iyv(x,y)).

In the expression, ¢ is the body of a conjunctive query
over S and 1) is the body of a conjunctive query over T. A
pair of instances Dg and Dy satisfies a GLAV mapping
m if for every assignment of x in Dg that satisfies ¢ there
exists an assignment of y in Dy that satisfies 1.

The schema mapping we have considered so far is
a limited form of GLAV mappings where each side of
the mapping involves only projection queries on a single
table. However, it is rather straightforward to extend
the complexity results for this limited form of schema
mappings to arbitrary GLAV mappings.

We define general p-mappings to be triples of the form
pGM = (S, T,gm), where gm is a set {(gm,, Pr(gm;)) |
i € [1,n]}, such that for each i € [1,n], gm; is a general
GLAV mapping. The definition of by-table semantics for
such mappings is a simple generalization of Definition 6.
The following result holds for general p-mappings.

Theorem 2 Let pGM be a general p-mapping between
a source schema S and a target schema T. Let Dg be an
instance of S. Let Q be an SPJ query with only equality
conditions over T. The problem of computing Q***'¢(Dyg)
with respect to pGM s in PTIME in the size of the data
and the mapping. O

4.2 By-tuple query answering

To extend the by-table query-answering strategy to by-
tuple semantics, we would need to compute the certain
answers for every mapping sequence generated by pM.
However, the number of such mapping sequences is ex-
ponential in the size of the input data. The following
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example shows that for certain queries this exponential
time complexity is inevitable.

Ezample 4 Suppose that in addition to the tables in Ex-
ample 1, we also have U(city) in the source and V(hightech)
in the target. The p-mapping for V' contains two possible
mappings: ({(city, hightech)}, .8) and (0, .2).

Consider the following query @), which decides if there
are any people living in a high-tech city.

Q: SELECT ‘true’
FROM T, V
WHERE T.mailing-addr = V.hightech

An incorrect way of answering the query is to first
execute the following two sub-queries Q1 and @, then
join the answers of ()1 and ()2 and summing up the prob-
abilities.

Q1: SELECT mailing-addr FROM T
Q2: SELECT hightech FROM V

Now consider the source instance D, where Dg is
shown in Figure 2(a), and Dy has two tuples (‘Moun-
tain View’) and (‘Sunnyvale’). Figure 4(a) and (b) show

tuple( DY and QL*P'(D). If we join the results of Q; and
@2, we obtain for the true tuple the following probability:
0.94%0.84-0.5%0.8 = 1.152. However, this is incorrect. By
enumerating all consistent target tables, we in fact com-
pute 0.864 as the probability. The reason for this error
is that on some target instance that is by-tuple consis-
tent with the source instance, the answers to both Q4
and @2 contain tuple (‘Sunnyvale’) and tuple (‘Moun-
tain View’). Thus, generating the tuple (‘Sunnyvale’) as
an answer for both Q1 and @2 and generating the tuple
(‘Mountain View’) for both queries are not independent
events, and so simply adding up their probabilities leads
to incorrect results.

Indeed, we do not know a better algorithm to answer
@ than by enumerating all by-tuple consistent target in-
stances and then answering () on each of them. O

In fact, we show that in general, answering SPJ queries
in by-tuple semantics with respect to schema p-mappings
is hard.

Theorem 3 Let Q be an SPJ query and let pM be a
schema p-mapping. The problem of finding the proba-
bility for a by-tuple answer to Q with respect to pM is
#P-complete with respect to data complexity and is in
PTIME with respect to mapping complexity. (|

The lower bound in Theorem 3 is proved by reducing
the problem of counting the number of variable assign-
ments that satisfy a bipartite monotone 2DNF Boolean
formula to the problem of finding the answers to Q.

In fact, the reason for the high complexity is exactly
that we are asking for the probability of the answer. The
following theorem shows that if we want to know only
the possible by-tuple answers, we can do so in polynomial
time.

Theorem 4 Given an SPJ query and a schema p-map-
ping, returning all by-tuple answers without probabilities
is in PTIME with respect to data complexity. O

The key to proving the PTIME complexity is that we
can find all by-tuple answer tuples (without knowing the
probability) by answering the query on the mirror target
of the source data. Formally, let Dg be the source data
and pM be the schema p-mapping. The mirror target
of Dg with respect to pM is defined as follows. If R is
not involved in any mapping, the mirror target contains
R itself; if R is the target of pM = (S,T,m) € pM,
the mirror target contains a relation R’ where for each
source tuple tg of S and each m € m, there is a tuple tp
in R’ that (1) is consistent with tg and m and contains
null value for each attribute that is not involved in m,
(2) contains an id column with the value of the id column
in tg (we assume the existence of identifier attribute id
for S and in practice we can use S’s key attributes in
place of id), and (3) contains a mapping column with the
identifier of m. Meanwhile, we slightly modify a query
Q into a mirror query @Q,, with respect to pM as fol-
lows: @, is the same as @) except that for each relation
R that is the target of a p-mapping in pM and occurs
multiple times in @’s FROM clause, and for any of R’s
two aliases R; and Ry in the FROM clause, Q' contains
in addition the following predicates: (R;.id <> Ra.id OR
R;.mapping=R5.mapping).

Lemma 1 Let pM be a schema p-mapping. Let Q be an
SPJ query and Q,, be Q’s mirror query with respect to
p_M. Let Dg be the source database and Dt be the mirror
target of Dg with respect to pM.

Then, t € Q'P'*(Dg) if and only if t € Qu(Dr) and
t does not contain null value. O

The size of the mirror target is polynomial in the size
of the data and the p-mapping. The PTIME complexity
bound follows from the fact that answering the mirror
query on the mirror target takes only polynomial time.

GLAYV mappings: Extending by-tuple semantics to ar-
bitrary GLAV mappings is much trickier than by-table
semantics. It would involve considering mapping sequences
whose length is the product of the number of tuples in
each source table, and the results are much less intuitive.
Hence, we postpone by-tuple semantics to future work.

4.3 Two restricted cases

In this section we identify two restricted but common
classes of queries for which by-tuple query answering
takes polynomial time. While we do not have a neces-
sary and sufficient condition for PTIME complexity of
query answering, we do not know any other cases where
it is possible to answer a query in polynomial time.

In our discussion we refer to subgoals of a query. The
subgoals are tables that occur in the FROM clause of a



10

Xin Dong et al.

query. Hence, even if the same table occurs twice in the
FROM clause, each occurrence is a different subgoal.

Queries with a single p-mapping subgoal

The first class of queries we consider are those that
include only a single subgoal being the target of a p-
mapping. Relations in the other subgoals are either in-
volved in ordinary mappings or do not require a map-
ping. Hence, if we only have uncertainty with respect to
one part of the domain, our queries will typically fall in
this class. We call such queries non-p-join queries. The
query @ in the motivating example is an example non-
p-join query.

Definition 9 (non-p-join queries) Let pM be a schema

p-mapping and let Q be an SPJ query.

If at most one subgoal in the body of @ is the target
of a p-mapping in pM, we say Q is a non-p-join query
with respect to pM. (Il

For a non-p-join query @, the by-tuple answers of )
can be generated from the by-table answers of () over
a set of databases, each containing a single tuple in the
source table. Specifically, let pM = (S, T, m) be the sin-
gle p-mapping whose target is a relation in @, and let
Dg be an instance of S with d tuples. Consider the set
of tuple databases T(Dg) = { D1, ..., Dy}, where for each
i € [1,d], D; is an instance of S and contains only the i-th
tuple in Dg. The following lemma shows that Q“P'¢(Dyg)
can be derived from Q'¢(Dy),. .., Q' (Dy).

Lemma 2 Let pM be a schema p-mapping between S
and T. Let Q be a non-p-join query over T and let Dg
be an instance of S. Let (t, Pr(t)) be a by-tuple answer
with respect to Ds and pM. Let T(t) be the subset of
T(Dgs) such that for each D € T(t), t € Q**'¢(D). The
following two conditions hold:

1 T() £0;
2. P?"(t) =1- HDET(t),(t,p)emelﬁ(D)(1 — p)

O

In practice, answering the query for each tuple database

can be expensive. We next describe Algorithm NON-
PJoIN, which computes the answers for all tuple databases
in one step. The key of the algorithm is to distinguish
answers generated by different source tuples. To do this,
we assume there is an identifier attribute id for the source
relation whose values are concatenations of values of the
key columns. We now describe the algorithm in detail.

Algorithm NoONPJOIN takes as input a non-p-join
query Q, a schema p-mapping pM, and a source instance
Dg, and proceeds in three steps to compute all by-tuple
answers.

Step 1: Rewrite Q to Q' such that it returns T.id in
addition. Revise the p-mapping such that each possible
mapping contains the correspondence between S.id and
T.id.

Step 2: Invoke BYTABLE with @', pM and Dg. Note
that each generated result tuple contains the id column
in addition to the attributes returned by Q.

Step 3: Project the answers returned in Step 2 on @Q’s re-
turned attributes. Suppose projecting tq,...,t, obtains
the answer tuple ¢, then the probability of ¢ is 1—-IT]* ; (1—
Pr(t;)).

Note that Algorithm NONPJOIN is different from Al-
gorithm BYTABLE in two ways. First, it considers an
identifier column of the source and so essentially it can
answer the query on all tuple databases parallelly. Sec-
ond, whereas BY TABLE combines the results from rewrit-
ten queries simply by adding up the probabilities of each
distinct tuple ¢, NONPJOIN needs to in addition compute
1— I ,(1 — Pr(t;)) for each tuple ¢; projecting which
obtains answer tuple t.

Example 5 Consider rewriting ) in the motivating ex-
ample, repeated as follows:

Q: SELECT mailing-addr FROM T

Step 1 rewrites @ into query Q' by adding the id
column:

Q’: SELECT id, mailing-addr FROM T

In Step 2, BYTABLE may generate the following SQL
query to compute by-table answers for Q’:

Qa: SELECT id, mailing-addr, SUM(pr)
FROM (
SELECT DISTINCT id, current-addr
AS mailing-addr, 0.5 AS pr
FROM S
UNION ALL
SELECT DISTINCT id, permanent-addr
AS mailing-addr, 0.4 AS pr
FROM S
UNION ALL
SELECT DISTINCT id, email-addr
AS mailing-addr, 0.1 AS pr
FROM S)
GROUP BY id, mailing-addr

Step 3 then generates the results using the following
query.

Qu: SELECT mailing-addr, NOR(pr) AS pr
FROM Qa

GROUP BY mailing-addr

,PTn, NOR com-
O

where for a set of probabilities pry, ...
putes 1 — IT"" (1 — pry).

An analysis of Algorithm NONP JOIN leads to the fol-
lowing complexity result for non-p-join queries.

Theorem 5 Let pM be a schema p-mapping and let Q
be a non-p-join query with respect to pM.

Answering Q with respect to pM in by-tuple seman-
tics is in PTIME in the size of the data and the mapping.
|
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Projected p-join queries

We now show that query answering can be done in
polynomial time for a class of queries, called projected p-
join queries, that include multiple subgoals involved in
p-mappings. In such a query, we say that a join predicate
is a p-join predicate with respect to a schema p-mapping
pM, if at least one of the involved relations is the target
of a p-mapping in pM. We define projected p-join queries
as follows.

Definition 10 (projected p-join query) Let pM be
a schema p-mapping and ) be an SPJ query over the
target of pM. If the following conditions hold, we say Q
is a projected p-join query with respect to pM:

— at least two subgoals in the body of @) are targets of
p-mappings in pM.

— for every p-join predicate, the join attribute (or an
equivalent attribute implied by the predicates in Q)
is returned in the SELECT clause. (|

Ezxample 6 Consider the schema p-mapping in Exam-

The SELECT clause includes J’s attributes that occur in
(1) @’s SELECT clause or (2) @’s join predicates that
join subgoals in J with subgoals in other partitions. The
WHERE clause includes Q’s predicates that contain only
subgoals in J. When J is a partition in a maximal p-join
partitioning of @), we say that @ ; is a p-join component
of Q.

The following is the main lemma underlying our al-
gorithm. It shows that we can compute the answers of @)
from the answers to its p-join components.

Lemma 3 Let pM be a schema p-mapping. Let Q be a
projected p-join query with respect to pM and let J be
a maximal p-join partitioning of Q. Let Q y1,...,Q ypn be
the p-join components of Q with respect to J.

For any instance Dg of the source schema of pM and
result tuple t € Q1*P'¢(Dg), the following two conditions
hold:

1. For each i € [1,n], there exists a single tuple t; €
tﬁple(DS), such thatty,. ..
together.

,tn generate t when joined

ple 4. A slight revision of (), shown as follows, is a projected- » .4 t1,... ty be the above tuples. Then Pr(t) = IT7"

p-join query.

Q’: SELECT V.hightech
FROM T, V
WHERE T.mailing-addr = V.hightech

0

Note that in practice, when joining data from mul-
tiple tables in a data integration scenario, we typically
project the join attributes, thereby leading to projected
p-join queries.

The key to answering a projected-p-join query @) is
to divide @ into multiple subqueries, each of which is a
non-p-join query, and compute the answer to ) from the
answers to the subqueries. We proceed by considering
partitions of the subgoals in Q). We say that a partition-
ing J is a refinement of a partitioning J’, denoted J < J',
if for each partition J € J, there is a partition J' € .J/,
such that J C J’. We consider the following partitioning
of @, the generation of which will be described in detail
in the algorithm.

Definition 11 (Maximal P-Join Partitioning) Let
pM be a schema p-mapping. Let Q be an SPJ query and
J be a partitioning of the subgoals in Q.

We say that J is a p-join partitioning of Q, if (1) each
partition J € J contains at most one subgoal that is the
target of a p-mapping in pM, and (2) if neither subgoal
in a join predicate is involved in p-mappings in pM, the
two subgoals belong to the same partition.

We say that J is a mazimal p-join partitioning of @,
if there does not exist a p-join partitioning J', such that
J=J. O

For each partition J € J, we can define a query @
as follows. The FROM clause includes the subgoals in J.

Lemma 3 leads naturally to the query-answering algo-
rithm PROJECTEDP JOIN, which takes as input a projected-
p-join query @, a schema p-mapping pM, and a source
instance Dg, outputs all by-tuple answers, and proceeds
in three steps.

Step 1: Generate maximum p-join partitions Jy,...,J,
as follows. First, initialize each partition to contain one
subgoal in @. Then, for each join predicate with subgoals
S; and S that are not involved in p-mappings in pM,
merge the partitions that S; and Sy belong to. Finally,
for each partition that contains no subgoal involved in
pM, merge it with another partition.

Step 2: For each p-join partition J;,¢ € [1,n], generate
the p-join component @ ;; and invoke Algorithm NON-
PJoiN with Qj;, pM and Dg to compute answers for

Qui-

Step 3: Join the results of Qj1,...,Q .. If an answer
tuple ¢ is obtained by joining t4,...,t,, then the proba-
bility of ¢ is computed by II" , Pr(t;).

We illustrate the algorithm using the following exam-
ple.

Ezample 7 Consider query @’ in Example 6. Its two p-
join components are ()1 and @2 shown in Example 4.
Suppose we compute 1 with query Q,, (shown in Exam-
ple 5) and compute Q5 with query Q’,. We can compute
by-tuple answers of Q' as follows:

SELECT Qu’.hightech, Qu.pr*Qu’.pr
FROM Qu, Qu’
WHERE Qu.mailing-addr = Qu’.hightect
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Since the number of p-join components is bounded
by the number of subgoals in a query, and for each of
them we invoke Algorithm NONPJOIN, query answering
for projected p-join queries takes polynomial time.

Theorem 6 Let pM be a schema p-mapping and let Q
be a projected-p-join query with respect to pM.

Answering Q with respect to pM in by-tuple seman-
tics is in PTIME in the size of the data and the mapping.
O

Other SPJ queries

A natural question is whether the two classes of queries
we have identified are the only ones for which query an-
swering is in PTIME for by-tuple semantics. If () con-
tains multiple subgoals that are involved in a schema
p-mapping, but @ is not a projected-p-join query, then
Condition 1 in Lemma 3 does not hold and the technique
for answering projected-p-join queries do not apply any
more. We do not know any better algorithm to answer
such queries than enumerating all mapping sequences.

We believe that the complexity of the border case,
where a query joins two relations involved in p-mappings
but does not return the join attribute, is #P-hard, but
currently it remains an open problem.

5 Top-K Query Answering

In this section, we consider returning the top-k query an-
swers, which are the k answer tuples with the top prob-
abilities. The main challenge in designing the algorithm
is to only perform the necessary reformulations at every
step and halt when the top-k answers are found. We first
describe our algorithm for by-table semantics. We then
show the challenges for by-tuple semantics and outline
our solution.

5.1 Returning top-k by-table answers

Recall that in by-table query answering, the probability
of an answer is the sum of the probabilities of the refor-
mulated queries that generate the answer. Our goal is to
reduce the number of reformulated queries we execute.
Our algorithm proceeds in a greedy fashion: we execute
queries in descending order of probabilities. For each tu-
ple ¢, we maintain the upper bound p,,..(t) and lower
bound pin (t) of its probability. This process halts when
we find k tuples whose p,in values are higher than p,,q.
of the rest of the tuples.

TorPKBYTABLE takes as input an SPJ query @, a
schema p-mapping pM, an instance Dg of the source
schema, and an integer k, and outputs the top-k answers
in Q'*'¢(Dg). The algorithm proceeds in three steps.

Step 1: Rewrite @ according to pM into a set of queries
Q1,...,Qn, each with a probability assigned in a similar
way as stated in Algorithm BYTABLE.

Step 2: Execute @1, ..., Q, in descending order of their
probabilities. Maintain the following measures:

— The highest probability, PMazx, for the tuples that
have not been generated yet. We initialize PMax
to 1; after executing query @; and updating the list
of answers (see third bullet), we decrease PMax by
Pr(Q;);

— The threshold th determining which answers are po-
tentially in the top-k. We initialize th to 0; after exe-
cuting @; and updating the answer list, we set th to
the k-th largest p,i, for tuples in the answer list;

— A list L of answers whose P, 18 no less than th, and

bounds pin and pPpa. for each answer in L. After

executing query Q;, we update the list as follows: (1)

for each t € L and t € Q;(Dg), we increase ppin(t)

by Pr(Q;); (2) for each ¢t € L but t € Q;(Dgs), we
decrease ppmqs(t) by Pr(Q;); (3) it PMax > th, for
each t € L but t € Q;(Dg), insert t to L, set pin to

Pr(Q;) and pyq.(t) to PMazx.

A list T of k tuples with top p:n values.

Step 3: When th > PMax and for each t ¢ T, th >
Pmaz(t), halt and return T'.

FEzxzample 8 Consider Example 1 where we seek for top-
1 answer. We answer the reformulated queries in order
of Q1,Q2,Qs. After answering @)1, for tuple (“Sunny-
vale”) we have p,in = .5 and ppa. = 1, and for tuple
(“Mountain View”) we have the same bounds. In addi-
tion, PMax = .5 and th = .5.

In the second round, we answer Q3. Then, for tuple
(“Sunnyvale”) we have ppi, = .9 and pna. = 1, and
for tuple (“Mountain View”) we have pn,, = .5 and
Pmaz = .6. Now PMaz = .1 and th = .9.

Because th > PMaz and th is above the p,q. for
the (“Mountain View”) tuple, we can halt and return
(“Sunnyvale”) as the top-1 answer. O

The next theorem states the correctness of ByTable-
TopK.

Theorem 7 For any schema mapping pM, SPJ query
Q, instance Dg of the source schema of pM, and inte-
ger k, Algorithm BYTABLETOPK correctly computes the
top-k answers in Q'"'¢(Dyg). O

Our algorithm differs from previous top-k algorithms
in the literature in two aspects. First, we execute the re-
formulated queries only when necessary, so we can return
the top-k answers without executing all reformulated
queries thereby leading to significant performance im-
provements. Fagin et al. [13] have proposed several algo-
rithms for finding instances with top-k scores, where each
instance has m attributes and the score of the instance is
an aggregation over values of these m attributes. How-
ever, these algorithms assume for each attribute there
exists a sorted list on its values, and they access the lists
in parallel. In our context, this would require executing
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all reformulated queries upfront. Li et al. [24] have stud-
ied computing top-k answers for aggregation and group-
by queries and optimizing query answering by generat-
ing the groups incrementally. Although we can also com-
pute by-table answers using an aggregation query, this
query is different from those considered in [24] in that
the WHERE clause contains a set of sub-queries rather
than database tables. Therefore, applying [24] here also
requires evaluating all reformulated queries at the begin-
ning.

Second, whereas maintaining upper bounds and lower
bounds for instances has been explored in the literature,
such as in Fagin’s NRA (Non-Random Access) algorithm
and in [24], our algorithm is different in that it keeps
these bounds only for tuples that have already been gen-
erated by an executed reformulated query and that are
potential top-k answers (by judging if the upper bound
is above the threshold th).

5.2 By-tuple top-K query answering

We next consider returning top-k answers in by-tuple se-
mantics. In general, we need to consider each mapping se-
quence and answer the query on the target instance that
is consistent with the source and the mapping sequence.
Algorithm ToPKBYTABLE can be modified to compute
top-k by-tuple answers by deciding at runtime the map-
ping sequence to consider next. However, for non-p-join
queries and projected-p-join queries, we can return top-
k answers more efficiently. We outline our method for
answering non-p-join queries here.

For non-p-join queries the probability of an answer
tuple ¢t to query @ cannot be expressed as a function of
t’s probabilities in executing reformulations of @Q; rather,
it is a function of ¢’s probabilities in answering @) on each
tuple database of the source table. However, retrieving
answers on a tuple base is expensive. Algorithm NON-
PJoIN provides a method that computes by-tuple an-
swers on the tuple databases in a batch mode by first
rewriting ) into Q' by returning the id column and then
executing @Q'’s reformulated queries. We find top-k an-
swers in a similar fashion. Here, after executing each re-
formulated query, we need to maintain two answer lists,
one for ) and one for @', and compute pin and pmas
for answers in different lists differently.

6 Representation of Probabilistic Mappings

Thus far, a p-mapping was represented by listing each
of its possible mappings, and the complexity of query
answering was polynomial in the size of that representa-
tion. Such a representation can be quite lengthy since it
essentially enumerates a probability distribution by list-
ing every combination of events in the probability space.
Hence, an interesting question is whether there are more

concise representations of p-mappings and whether our
algorithms can leverage them.

We consider three representations that can reduce the
size of the p-mapping exponentially. In Section 6.1 we
consider a representation in which the attributes of the
source and target tables are partitioned into groups and
p-mappings are specified for each group separately. We
show that query answering can be done in time polyno-
mial in the size of the representation. In Section 6.2 we
consider probabilistic correspondences, where we spec-
ify the marginal probability of each attribute correspon-
dence. However, we show that such a representation can
only be leveraged in limited cases. Finally, we consider
Bayes Nets, the most common method for concisely rep-
resenting probability distributions, in Section 6.3, and
show that even though some p-mappings can be repre-
sented by them, query answering does not necessarily
benefit from the representation.

6.1 Group probabilistic mapping

In practice, the uncertainty we have about a p-mapping
can often be represented as a few localized choices, es-
pecially when schema mappings are created by semi-
automatic methods. To represent such p-mappings more
concisely, we can partition the source and target at-
tributes and specify p-mappings for each partition.

Definition 12 (Group P-Mapping) An n-group p-
mapping gpM is a triple (S, T, pM), where

— S is a source relation schema and Sq,...,.S, is a set
of disjoint subsets of attributes in S;

— T is a target relation schema and T7,...,T,, is a set
of disjoint subsets of attributes in T7;

— pM is a set of p-mappings {pMy,...,pM,}, where

for each 1 < i < n, pM; is a p-mapping between S;
and T;. O

The semantics of an n-group p-mapping gpM = (S, T,
pM) is a p-mapping that includes the Cartesian product
of the mappings in each of the pM;’s. The probability of
the mapping composed of m; € pMy,...,m, € pM, is
I, Pr(m;).

Ezample 9 Figure 5(a) shows p-mapping pM between
the schemas S(a,b,c) and T(a’,¥, ). Figure 5(b) and
(c) show two independent mappings that together form
a 2-group p-mapping equivalent to pM. U

Note that a group p-mapping can be considerably
more compact than an equivalent p-mapping. Specifi-
cally, if each pM; includes [; mappings, then a group
p-mapping can describe IT}" ;l; possible mappings with
>, l; sub-mappings. The important feature of n-group
p-mappings is that query answering can be done in time
polynomial in their size.
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Mapping Prob
{(a,a”), (b,p’), (c,c)} | 0.72 Mapping Prob Mapping | Prob
{(a,b’), (c,c’)} 0.18 {(a,a), (b,p)} | 0.8 {(c,c))} 0.9
{(a,a”), (b,b’)} 0.08 {(a,b")} 0.2 0 0.1
(a,b")} 0.02 (b) (©)
(a)
Fig. 5 Example 9: the p-mapping in (a) is equivalent to the 2-group p-mapping in (b) and (c).
Theorem 8 Let gpM be a schema group p-mapping and Mapping Prob Cor7r Prob
let @ be an SPJ query. The mapping complexity of an- {(a,a’), (b,b"), (c,c)} | 0.8 }8’%7%% 83
swering Q with respect to gpM in both by-table semantics {(a,b), (7C7C’) 0.1 {(b:b’)} 0.8
and by-tuple semantics is in PTIME. O {(ab )(} ) 0.1 {(c,c))} 0.9
a
(b)

Note that as n grows, fewer p-mappings can be repre-
sented with n-group p-mappings. Formally, suppose we
denote by M, the set of all n-group p-mappings be-
tween S and T, then:

. +1
Proposition 1 For each n > 1, My,

C M%r. O

We typically expect that when possible, a mapping
would be given as a group p-mapping. The following the-
orem shows that we can find the best group p-mapping
for a given p-mapping in polynomial time.

Proposition 2 Given a p-mapping pM , we can find in
polynomial time in the size of pM the mazimal n and an
n-group p-mapping gpM , such that gpM is equivalent to
pM. O

6.2 Probabilistic correspondences

The second representation we consider, probabilistic cor-
respondences, represents a p-mapping with the marginal
probabilities of attribute correspondences. This repre-
sentation is the most compact one as its size is propor-
tional to the product of the schema size of S and the
schema size of T'.

Definition 13 (Probabilistic Correspondences) A
probabilistic correspondence mapping (p-correspondence)
is a triple pC = (5,T,c), where S = (s1,...,8y,) is a
source relation schema, T' = (t1,...,t,) is a target rela-
tion schema, and

— cis a set {(c;;, Pr(ci;))|i € [1,m],j € [1,n]}, where
¢ij = (8i,t;) is an attribute correspondence, and
Pr(ci;) € [0,1];

— for each i € [1,m], >°7_, Pr(cij) < 1;

— for each j € [1,n],>" ", Pr(ci;) <1. O

Note that for a source attribute s;, we allow

Z P’I’(Ci]‘) < 1.
j=1

Fig. 6 Example 10: the p-mapping in (a) corresponds to the
p-correspondence in (b).

This is because in some of the possible mappings, s; may
not be mapped to any target attribute. Similarly, for a
target attribute t;, we allow

m
Z PT(CZ']') < 1.
i=1
From each p-mapping, we can infer a p-correspondence
by calculating the marginal probabilities of each attribute
correspondence. Specifically, for a p-mapping pM = (S, T,
m), we denote by pC(pM) the p-correspondence where
each marginal probability is computed as follows:

>

cijEM,mem

Pr(c;j) = Pr(m)

However, as the following example shows, the relation-
ship between p-mappings and p-correspondences is many-
to-one.

Ezample 10 The p-correspondence in Figure 6(b) is the
one computed for both the p-mapping in Figure 6(a) and
the p-mapping in Figure 5(a). O

Given the many-to-one relationship, the question is
when it is possible to compute the correct answer to a
query based only on the p-correspondence. That is, we
are looking for a class of queries Q, called p-mapping in-
dependent queries, such that for every Q € Q and every
database instance Dg, if pC(pM;) = pC(pMs), then the
answer of () with respect to pM; and Dg is the same as
the answer of () with respect to pMs and Dg. Unfortu-
nately, this property holds for a very restricted class of
queries, defined as follows:

Definition 14 (Single-Attribute Query) Let pC =
(S,T,c) be a p-correspondence. An SPJ query @ is said
to be a single-attribute query with respect to pC if T has
one single attribute occurring in the SELECT and WHERE
clauses of Q. This attribute of T is said to be a critical
attribute. a
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Theorem 9 Let pC be a schema p-correspondence, and
Q be an SPJ query. Then, Q is p-mapping independent
with respect to pC' if and only if for each pC C pC, Q is
a single-attribute query with respect to pC. 0

Ezample 11 Continuing with Example 10, consider the
p-correspondence pC' in Figure 6(b) and the following
two queries Q1 and Q2. Query Q7 is mapping indepen-
dent with respect to pC, but Q2 is not.

Q1: SELECT T.a FROM T,U WHERE T.a=U.a’
Q2: SELECT T.a, T.c FROM T

O

Theorem 9 simplifies query answering for p-mapping
independent queries. Wherever we needed to consider
every possible mapping in previous algorithms, we con-
sider only every attribute correspondence for the critical
attribute.

Corollary 1 Let pC be a schema p-correspondence, and
Q be a p-mapping independent SPJ query with respect to
pC. The mapping complezity of answering Q with respect
to pC in both by-table semantics and by-tuple semantics
is in PTIME. O

The result in Theorem 9 can be generalized to cases
where we know the p-mapping is an n-group p-mapping.
Specifically, as long as @ includes at most a single at-
tribute in each of the groups in the n-group p-mapping,
query answering can still be done with the correspon-
dence mapping. We omit the details of this generaliza-
tion.

6.3 Bayes nets

Bayes Nets are a powerful mechanism for concisely rep-
resenting probability distributions and reasoning about
probabilistic events [29]. The following example shows
how Bayes Nets can be used in our context.

Ezample 12 Consider two schemas S = (s1,..., $p, s},
..,8h) and T = (t1,...,t,). Consider the p-mapping
pM = (S,T,m), which describes the following proba-
bility distribution: if s; maps to ¢; then it is more likely
that {sa,..., s, } mapsto {ta,...,t,}, whereas if s§ maps
to t1 then it is more likely that {s},...,s/,} maps to
{tQa s 7tn}'
We can represent the p-mapping using a Bayes Net
as follows. Let ¢ be an integer constant. Then,

1. Pr((s1,t1)) = Pr((s),t1)) = 1/2;

2. for each i € [1,n], Pr((s;,t;)|(s1,t1)) =1 — % and
Pr((s,ti)|(s1,t1)) = L

3. for each i € [1,n], Pr((s;,t;)|(s,t1)) = % and

Pr((sj, ti)|(s1,t1)) =1—1

c"

Since the p-mapping contains 2" possible mappings,
the original representation would take space O(2"); how-
ever, the Bayes-Net representation takes only space O(n).
O

Although the Bayes-Net representation can reduce
the size exponentially for some p-mappings, this con-
ciseness may not help reduce the complexity of query
answering. In Example 12, a query that returns all at-
tributes in S will have 2" answer tuples in by-table se-
mantics and enumerating all these answers already takes
exponential time in the size of pM’s Bayes-Net represen-
tation.

7 Probabilistic Data Exchange

In this section we consider the use of probabilistic schema
mappings in another common form of data integration,
namely, data exchange. In doing so, we establish a close
relationship between probabilistic mappings and proba-
bilistic databases.

Unlike virtual data integration, in data exchange our
goal is to create an instance of the target schema, given
instances of the source schema. As discussed in previous
work on data exchange [11], our goal is to create the
core universal solution, which is an instance of the target
schema that is minimal and from which we can derive all
and only the certain answers to a query. In our context,
we show that we can create a probabilistic database that
serves as the core universal solution.

Probabilistic databases: We begin by briefly review-
ing probabilistic databases (the reader is referred to [33]
for further details).

A probabilistic database (p-database) pD over a schema
Ris aset {(D1, Pr(D1)),...,(Dn, Pr(D,))}, such that

— for i € [1,n], D; is an instance of R, and for every
ivj S [1,TL], { #] = DZ 7& Dj;
— Pr(D;) €[0,1] and Y., Pr(D;) = 1.

Answers to queries over p-databases have probabili-
ties associated with them. Specifically, let @) be a query
over pD, and let ¢t be a tuple. We denote by D(t) the
subset of pD such that for each D € D(t), t € Q(D). Let
p = ZDeﬁ(t) Pr(D). If p > 0, we call (t,p) a possible
tuple in the answer of Q on pD.

Given a query @ and a p-database pD, we denote by
Q(pD) the set of all possible tuples in the answer of @
on pD. We next show that data-exchange solutions can
be represented as p-databases.

Data-exchange solutions: The data-exchange prob-
lem for a p-mapping pM = (S,7,m) and an instance
Dg of S is to find an instance of T that is consistent
with Dg and pM. We distinguish between by-table solu-
tions and by-tuple solutions.
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Definition 15 (By-table Solution) Let pM = (S, T, m) values that occur in source instances, called constants,

be a p-mapping and Dg be an instance of S.

and let V be an infinite set of variables, called labeled

A p-database pDr = {(D1, Pr(D1)),. .., (Dy, Pr(Dy))nulls. CNY = 0. Let D be a database instance. We

is a by-table solution for Dg under pM, if for each i €
[1,n], there exists a subset ; C m, such that

— for each m € my, D; is by-table consistent with Dg

and m;
= Pr(Di) =3 cm: Pr(m);
— my,..., My, form a partition of m. O

Intuitively, for each possible mapping m, there should
be a target instance that is consistent with the source
instance and m, and the probability of the target in-
stance should be the same as the probability of m. How-
ever, there can be a set of possible mappings m; such
that there exists a target instance, D;, that is consistent
with the source instance and each of the mapping in m;;
hence, the probability of D; should be the sum of the
probabilities of the mappings in m;. Finally, the solution
should have one and only one target for each possible
mapping, so my,...,m, should form a partition of the
mappings in m. In the definition for by-tuple semantics,
the same intuition applies, except that we need to con-
sider subsets of sequences.

denote by V(D) C V the set of labeled nulls occurring
in D.

Definition 17 (Instance Homomorphism) Let Dp
and D% be two instances of schema R with values in
cuv.

A homomorphism h : Dp — DY, is a mapping from
CUV(Dg) to CUV(D%) such that

— h(c) = ¢ for every c € C;
— for every tuple t = (v1,...,v,) in Dg, we have that
h(t) = (h(v1),...,h(vy,)) is in DY. O

We next extend the definition of homomorphism for
traditional databases to homomorphism for p-databases.
Consider two p-databases pD and pD’. Intuitively, for
pD to be homomorphic to pD’, each possible database
in pD should be homomorphic to some possible database
in pD’. However, one possible database in pD can be ho-
momorphic to several possible databases in pD’. We thus
partition the databases in pD’ and each database in pD
should be homomorphic to the databases in one partition
of pD’. We note that it can also happen that multiple

Definition 16 (By-tuple Solution) Let pM = (S, T, m) databases in pD are homomorphic to the same possi-

be a p-mapping and Dg be an instance of S with d tu-
ples.

ble database in pD’. Our definition requires that each
database in pD is homomorphic to at least one distinct

A p-database pDr = {(D1, Pr(D1)), ..., (Dn, Pr(Dy))Jdatabase in pD’ and so for pD to be homomorphic to

is a by-tuple solution for Dg under pM if for each i €
[1,n], there exists a subset Seq, C seq,(pM ), such that

— for each seq € seq;, D; is by-tuple consistent with Dg

and segq;
- PT(D7) = Zsququ Pr(seq);
— Sequ, . .., S€q, form a partition of seq,(pM). O

We illustrate by-table solutions and by-tuple solu-
tions in the following example.

Ezxample 13 Consider the p-mapping pM and the source
instance Dg in Example 1 (repeated in Figure 7(a)(b)).
Figure 7(c) shows a by-table solution for Dg under pM.
Figure 7(d) and (e) show two by-tuple solutions for Dg
under pM. Note that in (d), the first possible database
is consistent with both sequence < mi,m; > and <
may,ms >, so its probability is 0.5 0.5+ 0.5%0.4 = 0.45.
O

Core universal solution: Among all solutions, we would
like to identify the core universal solution, because it is
unique up to isomorphism and because we can use it to
find all the answers to a query. We define the core univer-
sal solution for p-databases, but first we need to define
homomorphism and isomorphism on such databases.
The definition of homomorphism on p-databases is
an extension of homomorphism on traditional databases,
which we review now. Let C be the set of all constant

pD’, the number of databases in pD should be no more
than that in pD’. As we will see in the definition of core
universal solution, with our definition of homomorphism,
the core universal solution would be the solution with the
least number of possible databases.

Definition 18 (Homomorphism of P-Databases) Let
pD = {(Di, Pr(D,)) | i € [1,n]} and pD’ = {(D!, Pr(D}) |
i € [1,1]} be two p-databases of the same schema. Let
P(pD’) be the powerset of the possible databases in pD’.

A homomorphism h : pD — pD’ is a mapping from
pD to P(pD’), such that

— for every D € pD and D’ € h(D), there exists a
homomorphism ¢ : D — D’;

— for every D € pD, Pr(D) =" picpp) Pr(D);

— h(D1),...,h(D,) form a partition of pD’. O

According to this definition, in Figure 7, p-database
pDs is homomorphic to pD3, but the homomorphism in
the opposite direction does not hold.

We next define isomorphism for p-databases, where

we require one-to-one mappings between possible databases.

Definition 19 (Isomorphism of P-Databases) Let
pD = {(Di, Pr(D,)) | i € [L,n]} and pD’ = {(D}, Pr(D})
i € [1,m]} be two p-databases of the same schema.

An isomorphism i : pD — pD’ is a bijective mapping
from pD to pD’, such that if h(D) = D’,
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Possible Mapping Prob
my = {(pname, name), (email-addr, email), 0.5
(current-addr, mailing-addr), (permanent-addr, home-addr)} )
- {(pname, name), (email-addr, email), 0.4
(permanent-addr, mailing-addr), (current-addr, home-addr)} '
_ pname, name), (email-addr, mailing-addr),
ms3 = 0.1
(current-addr, home-addr) }
(a)
pname | email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale
(b)
il iling-add home-add ffice-add - -
e e T Tome st [Nl | e e et Tt | o
Bob bob@ Sunnvvale Sunnvvale 02 Alice | alice@ | Mountain View | Sunnyvale 01
piIO = Y Bob bob@ Sunnyvale Sunnyvale 02
name | email | mailing-addr home-addr office-addr T 1p :0'%5(1 o 1d i 1d
ATice | alice@ Sunnyvale Mountain View [0)] name | emat malihg-acar me-acdr | omce-acar
Bob bob@ Sunnvvale Sunnvvale 02 Alice | alice@ | Mountain View | Sunnyvale o1
g: 0 Y Bob bob@ Sunnyvale Sunnyvale 02
name | email | mailing-addr home-addr office-addr T lp :0'2(?(1 o Id ficoadd
Alice ET1 alice@ Mountain View o1 name | cmnat malmg-acar me-addr | ofice-addr
Bob 9 bob@ Sunnvvale 02 Alice | alice@ | Mountain View | Sunnyvale 01
p=0.1 Y Bob E2 bob@ Sunnyvale 02
Ty p=0.05
mame T email mailin(g(z)a 1dr homo-addr T ofice-addr name | email | mailing-addr home-addr office-addr
Alice | alice@ | Mountain View | Sunnyvale 01 Alice | alice@ Sunnyvale Mountain View 01
Bob bob@ Sunnyvale Sunnyvale 02 Bob bob@ Sunnyvale Sunnyvale 02
— p=0.20
rame T email mailli)n_g?.a?dr Tomo-addr T ofico-addr name | email | mailing-addr home-addr office-addr
Alice | alice@ | Mountain View | Sunnyvale 01 %li%e %hfg gunnyva{e Mosu ntain Yiew 8;
Bob £ bob@ g ] 02 0 0 unnyvale unnyvale
- 5005 S . _ P=0.16
e T email mailing—a(.i AR Tome-addr Sfceaddr name | email | mailing-addr home-addr office-addr
Alice | alice@ Sunnyvale Mountain View o1 Alice [ alice@ Sunnyvale Mountain View 01
Bob bob@ Sunnyvale Sunnyvale 02 Bob b2 b(;b_@o o7 Sunnyvale 02
=0.36 - e
name | email mailirll)g-addr home-addr office-addr name email malhpg-addr homejadd%" office-addr
Alice | alice@ Sunnyvale Mountain View 01 %l(l)(i)e bf];)l@ Suarilnc)?\%le Moéll?rfi;i;{éew 8;
Bob E2 bob@ S ale 02
p=0.04 — : __p=0.05
name | email | mailing-addr homo-addr ofice-addr name | email | mailing-addr home-addr office-addr
Alice 7 alice@ Mountam View 01 Alice E1 alice@ Mountain View 01
Bob | bob@ Sunnyvale Sunnyvale 02 Bob | bob@ Sunnyvale Sunnyvale 02
=0.04
=0.09 : e
rame T email mailing—a Idr homo-addr offco-addr name | email | mailing-addr home-addr office-addr
Alice Vo alice@ Mountam View 01 Alice E1 alice@ Mountain View [0J]
Bob £ bob@ Sunnyvale 02 Bob E2 bob@ Sunnyvale 02
p=0.01 p=0.01

(d)

(e)

Fig. 7 The running example: (a) a probabilistic schema mapping between S and T'; (b) a source instance Dg; (¢) a by-table
solution pD; for Dgs under pM; (d) a by-tuple solution pDs for Dg under pM; (e) another by-tuple solution pDs3 for Dg
under pM. In (c)(d)(e), O1, 02, E1, and E2 are labeled nulls.

— there exists an isomorphism g : D — D’;
— Pr(D) = Pr(D’).

We can now define core universal solutions.

Definition 20 (Core Universal Solution) Let pM =
(S,T,m) be a p-mapping and Dg be an instance of S.
A p-database instance pDr of T is called a by-table
(resp. by-tuple) universal solution for Ds under pM, if
(1) pDr is a by-table (resp. by-tuple) solution for Dg,
and (2) for every by-table (resp. by-tuple) solution pD/.

Further, pDr is called a by-table (resp. by-tuple) core

O  wuniversal solution for Dg if for each possible database
Dy € pDyp, there is no homomorphism from D to a
proper subset of tuples in Dr.

for Dg, there exists a homomorphism h : pDp — pD..

O

Intuitively, a core universal solution is the smallest
and most general solution. In Example 13, pD; is the
core universal solution in by-table semantics and pDs is
the core universal solution in by-tuple semantics.

The following theorem establishes the key properties
of core universal solutions in our context.
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Theorem 10 Let pM = (S,T,m) be a p-mapping and
Dg be an instance of S.

1. There is a unique by-table core universal solution and
a unique by-tuple core universal solution up to iso-
morphism for Dg with respect to pM .

2. Let Q be a conjunctive query over T. We denote by
Q(pD) the results of answering Q on pD and discard-
ing all answer tuples containing null values (labeled
nulls). Then,

Q""*(Ds) = Q(pDF™").

Similarly, let pDéf‘ple be the by-tuple core universal
solution for Dg under pM. Then,

Qtuple(DS) _ Q(pD;uPle). O

Complexity of data exchange: Recall that query an-
swering is in PTIME in by-table semantics, and in #P in
by-tuple semantics in general. However, data exchange in
both semantics is in PTIME in the size of the data and
in the size of the mapping. The complexity of computing
the core universal solution is established by the following
theorem:

Theorem 11 Let pM = (S,T,m) be a p-mapping and
Dg be an instance of S.

Generating the by-table or by-tuple core universal so-
lution for Dg under pM takes polynomial time in the
size of the data and the mapping. (I

For by-table semantics the proof is rather straight-
forward. For by-tuple semantics the proof requires a spe-
cial representation of p-databases, called disjunctive p-
database.

Definition 21 (Disjunctive P-Database) Let R be
a relation schema where there exists a set of attributes
that together form the key of the relation. Let pDY, be a
set of tuples of R, each attached with a probability.

We say that pD}, is a disjunctive p-database if for
each key value that occurs in pD},, the probabilities of
the tuples with this key value sum up to 1. O

In a disjunctive p-database, we consider tuples with
the same key value as disjoint and those with different
key values as independent. Formally, let key,,..., key,,
be the set of all distinct key values in pD},. For each
i € [1,n], we denote by d; the number of tuples whose key
value is key,. Then, with a set of X" ,d; tuples, pDY, can
define a set of 117" , d; possible databases, where each pos-
sible database (D, Pr(D)) contains n tuples t1,...,t,,
such that (1) for each i € [1,n], the key value of ¢; is
key,; and (2) Pr(D) = II}, Pr(t;). Figure 8 shows the
disjunctive p-database that is equivalent to pDs in Fig-
ure 7(d).

Theorem 11 is based on the following lemma.

Lemma 4 Let pM = (S,T,m) be a p-mapping and Dg
be an instance of S.

The by-tuple core universal solution for Dg under
pM can be represented as a disjunctive p-database. [

The complexity of answering queries over the core
universal solutions is the same as that of the correspond-
ing results for probabilistic databases. Specifically, the
following theorem follows from [31].

Theorem 12 Let Q be a conjunctive query.

— Let pD be a p-database instance. Computing Q(pD)
1s in PTIME in the size of the data.

— Let pDV be a disjunctive p-database instance. Com-
puting Q(pDV) is #P-complete in the size of the data.
O

Finally, we note that when the p-mapping is a group
p-mapping, we can compute the core universal solution
in time that is polynomial in the size of the data and
in the size of the group p-mapping by representing the
solution as a set of p-databases.

GLAYV mappings: The complexity results for data ex-
change under our limited form of p-mappings carry over
to GLAV mappings. For by-table semantics, generating
the core universal solution takes polynomial time; for
by-tuple semantics, defining the core universal solution
is tricky and we leave it for future work.

Theorem 13 Let pGM be a GLAV p-mapping between
a source schema S and a target schema T. Let Dg be an
instance of S.

Generating the by-table core universal solution for
Dgs under pM takes polynomial time in the size of the
data and the mapping. O

8 Composition and Inversion

Composition and inversion of mappings have received
significant attention recently [5,10,12,26] because they
are fundamental operations on mappings and they are
important for data exchange, integration and peer data
management. In this section, we study composition and
inversion of probabilistic mappings. We show that prob-
abilistic mappings are closed under composition but not
under inversion, and we can compose two p-mappings in
polynomial time.

Composition: Intuitively, composing two p-mappings
derives a p-mapping between the source schema of the
first p-mapping and the target schema of the second p-
mapping, such that the composition p-mapping has the
same effect as applying the two p-mappings successively.
We formally define mapping compositions as follows.



Data Integration with Uncertainty

19

key | name | email mailing-addr home-addr office-addr | probability
1 Alice | alice@ | Mountain View Sunnyvale [0J] 0.5
1 Alice | alice@ Sunnyvale Mountain View 01 0.4
1 Alice E1 alice@ Mountain View 01 0.1
2 Bob | bob@ Sunnyvale Sunnyvale 02 0.9
2 Bob E2 bob@ Sunnyvale 02 0.1

Fig. 8 Disjunctive P-database that is equivalent to pD2 in Figure 7(d).

Definition 22 (Composition of P-Mappings) Let
pM; = (R,S,my) and pM,; = (S,7,msz) be two p-
mappings.

We call pM = (R, T,m) a by-table (resp. by-tuple)
composition of pMy and pMs, denoted by pM = pM; o
pMs, if for each Dy of R and Dy of T, Dy is by-table
(resp. by-tuple) consistent with Dgr with probability p
under pM, if and only if there exists a set of possible
databases Dg of S, such that

— for each D € Dg, D is by-table (resp. by-tuple) con-
sistent with Dg with probability p; (D) under pMy;
— for each D € Dg, Dr is by-table (resp. by-tuple)
consistent with D with probability ps (D) under pMs;
— P =2 peps P1(D) - p2(D). O

When we have two p-mappings and need to apply
them successively, a natural thought is to compute their
composition and apply the result mapping directly. In-
deed, the following theorem shows that for any two p-
mappings, there is a unique composition p-mapping and
we can generate it in polynomial time. Thus, the above
strategy is feasible and efficient.

Theorem 14 Let pM; = (R, S,m1) and pMy = (S, T,

my) be two p-mappings. Between R and T there exists a
unique p-mapping, pM, that is the composition of pM;
and pMs in both by-table and by-tuple semantics and we
can generate pM in polynomial time. O

Whereas probabilistic mappings in general are closed
under composition, the following theorem shows that
n-group p-mappings are not closed under composition
when n > 1.

Theorem 15 N-group (n > 1) p-mappings are not closed
under mapping composition. (I

Inversion: The intuition for inverse mappings is as fol-
lows: if we compose a p-mapping, pM, and its inverse
mapping, we obtain an identity mapping, which deter-
ministically maps each attribute to itself. Given a schema
R, we denote the identity p-mapping for R as IM(R).

Definition 23 (Inversion of P-Mapping) Let pM =
(S,T,m) be a p-mapping. We say pM’ = (T,S,m’) is
an inverse of pMgr, if pM o pM’' = IM(S). O

Note that our definition of inversion corresponds to
global inverse in [10], which can be applied to the class

of all source instances. In [10] Fagin shows that for a
traditional deterministic mapping to have a global in-
verse, it needs to satisfy the unique solutions property;
that is, no two distinct source instances have the same
set of solutions. In our context, as shown in the following
theorem, only p-mappings in a very limited form have in-
verse p-mappings but the vast majority of p-mappings as
illustrated in this paper do not have inverse p-mappings.

Theorem 16 Let pM = (S, T, m) be a p-mapping. Then,
pM has an inverse p-mapping if and only if

— m contains a single possible mapping (m,1);
— each attribute in S is involved in an attribute corre-
spondence in m. O

9 Broader Classes of Mappings

In this section we briefly show how our results can be
extended to capture three common practical extensions
to our mapping language.

Complex mappings: Complex mappings map a set of
attributes in the source to a set of attributes in the tar-
get. For example, we can map the attribute address to
the concatenation of street, city, and state.

Formally, a set correspondence between S and T is
a relationship between a subset of attributes in S and
a subset of attributes in T. Here, the function associ-
ated with the relationship specifies a single value for
each of the target attributes given a value for each of
the source attributes. Again, the actual functions are ir-
relevant to our discussion. A complex mapping is a triple
(S,T,em), where em is a set of set correspondences,
such that each attribute in S or T is involved in at
most one set correspondence. A complex p-mapping is
of the form pCM = {(emy, Pr(em;)) | ¢ € [1,n]}, where
Yo, Pr(em;) =1.

Theorem 17 Let pCM be a complex schema p-mapping

between schemas S and T. Let Dg be an instance of S.

1. Let Q be an SPJ query over T. The data complex-
ity and mapping complexity of computing Q**"'¢(Dg)
with respect to pCM are PTIME. The data complez-
ity of computing Q'"P'¢(Dg) with respect to pCM is
#P-complete. The mapping complexity of computing
Q'?'e(Dg) with respect to pCM is in PTIME.
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2. Generating the by-table or by-tuple core universal so-
lution for Dg under pCM takes polynomial time in
the size of the data and the mapping. (Il

Union mapping: Union mappings specify relationships
such as both attribute home-address and attribute office-
address can be mapped to address. Formally, a union
mapping is a triple (S,T,m), where m is a set of map-
pings between S and 7. Given a source relation Dg
and a target relation Dp, we say Dg and Dp are con-
sistent with respect to the union mapping if for each
source tuple ¢t and m € m, there exists a target tuple
t', such that ¢ and t’ satisfy m. A union p-mapping is
of the form pUM = {(m;, Pr(m;)) | ¢ € [1,n]}, where
St Pr(m;) = 1.

The results in this paper carry over, except that for
by-tuple data exchange, we need a new representation
for the core universal solution.

Theorem 18 Let pUM be a union schema p-mapping
between a source schema S and a target schema T'. Let
Dg be an instance of S.

1. Let Q be a conjunctive query over T. The problem
of computing Q'*'¢(Dg) with respect to pUM is in
PTIME in the size of the data and the mapping;
the problem of computing Q*“P'*(Dg) with respect to
pUM is in PTIME in the size of the mapping and
#P-complete in the size of the data.

2. Generating the by-table or by-tuple core universal so-
lution for Dg under pUM takes polynomial time in
the size of the data and the mapping. O

Conditional mappings: In practice, our uncertainty is
often conditioned. For example, we may want to state
that daytime-phone maps to work-phone with probability
60% if age < 65, and maps to home-phone with proba-
bility 90% if age > 65.

We define a conditional p-mapping as a set cpM =
{(pM;,C4),...,(pMy,Cy)}, where pMy,...,pM, are p-
mappings, and C1,...,C,, are pairwise disjoint condi-
tions. Intuitively, for each i € [1,n], pM; describes the
probability distribution of possible mappings when con-
dition C; holds. Conditional mappings make more sense
for by-tuple semantics. The following theorem shows that
our results carry over to such mappings.

10 Related Work

We are not aware of any previous work studying the
semantics and properties of probabilistic schema map-
pings. Florescu et al. [14] were the first to advocate the
use of probabilities in data integration. Their work used
probabilities to model (1) a mediated schema with over-
lapping classes (e.g., DatabasePapers and AIPapers), (2)
source descriptions stating the probability of a tuple be-
ing present in a source, and (3) overlap between data
sources. While these are important aspects of many do-
mains and should be incorporated into a data integra-
tion system, our focus here is different. Magnani and
Montesi [27] have empirically shown that top-k schema
mappings can be used to increase the recall of a data
integration process and Gal [15] described how to gener-
ate top-k schema matchings by combining the matching
results generated by various matchers. The probabilistic
schema mappings we propose are different as it contains
all possible schema mappings and has probabilities on
these mappings to reflect the likelihood that each map-
ping is correct. Nottelmann and Straccia [28] proposed
generating probabilistic schema matchings that capture
the uncertainty in each matching step. The probabilistic
schema mappings we consider in addition takes into con-
sideration various combinations of attribute correspon-
dences and describe a distribution of possible schema
mappings where the probabilities of all mappings sum up
to 1. Finally, De Rougement and Vieilleribiere [7] con-
sidered approximate data exchange in that they relaxed
the constraints on the target schema, which is a different
approach from ours.

There has been a flurry of activity around proba-
bilistic and uncertain databases lately [4,33,6,3]. Our
intention is that a data integration system will be based
on a probabilistic data model, and we leverage concepts
from that work as much as possible. We also believe that
uncertainty and lineage are closely related, in the spirit
of [4], and that relationship will play a key role in data
integration. We leave exploring this topic to future work.

11 Conclusions and future work

We introduced probabilistic schema mappings, which are
a key component of data integration systems that han-
dle uncertainty. In particular, probabilistic schema map-

Theorem 19 Let cpM be a conditional schema p-mapping pings enable us to answer queries on heterogeneous data

between S and T. Let Dg be an instance of S.

1. Let Q be an SPJ query over T. The problem of com-
puting Q*"P'¢(Dg) with respect to cpM is in PTIME
in the size of the mapping and #P-complete in the
size of the data.

2. Generating the by-tuple core universal solution for
Dg under cpM takes linear time in the size of the
data and the mapping. O

sources even if we have only a set of candidate map-
pings that may not be precise. We identified two possi-
ble semantics for such mappings, by-table and by-tuple,
and presented query answering algorithms and computa-
tional complexity for both semantics. We also considered
concise encoding of probabilistic mappings, with which
we are able to improve the efficiency of query answer-
ing. Finally, we studied the application of probabilistic
schema mappings in the context of data exchange and
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extended our definition to more powerful schema map-
ping languages to show the extensibility of our approach.

We are currently working on several extensions to
this work. First, we have built a system that automati-
cally creates a mediated schema from a set of given data
sources. As an intermediate step in doing so, we create
probabilistic schema mappings between the data sources
and several candidate mediated schemas. We use these
mappings to choose a mediated schema that appears to
be the best fit.

Second, to employ probabilistic mappings in resolv-
ing heterogeneity at the schema level, we must have a
good method of generating probabilities for the map-
pings. This is possible as techniques for semi-automatic
schema mapping are often based on Machine Learning
techniques that at their core compute the confidence
of correspondences they generate. However, such confi-
dence is meant more as a ranking mechanism than true
probabilities between candidates and is associated with
attribute correspondences rather than candidate map-
pings. We plan to study how to generate from them prob-
abilities for candidate mappings.

Third, we would like to reason about the uncertainty
in schema mappings in order to improve the schema map-
pings. Specifically, by analyzing the probabilities of the
candidate mappings, we would like to find the critical
parts (i.e., attribute correspondences) where it is most
beneficial to expand more resources (human or other-
wise) to improve schema mapping.

Finally, we would like to extend our current results
to probabilistic data and probabilistic queries and build
a full-fledged data integration system that can handle
uncertainty at various levels. Studying the theoretical
underpinning of probabilistic mappings is the first step
towards building such a system. In addition, we need
to extend the current work in the community on proba-
bilistic databases [33] to study how to efficiently answer
queries in the presence of uncertainties in schemas and
in data, and study how to translate a keyword query
into structured queries by exploiting evidence obtained
from the existing data and users’ search and querying
patterns.
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12 Appendix: Proofs

Theorem 1. Let pM be a schema p-mapping and let Q
be an SPJ query. Answering QQ with respect to pM in
by-table semantics is in PTIME in the size of the data
and the mapping. O

Proof 1t is trivial that Algorithm BYTABLE computes all
by-table answers. We now consider its time complexity
by examining the time complexity of each step.

Step 1: Assume for each target relation T;,i € [1,],
the involved p-mapping contains n; possible mappings.
Then, the number of reformulated queries is IT!_,n;,
polynomial in the size of the mapping.

Given the restricted class of mappings we consider,
we can reformulate the query as follows. For each of T;’s
attributes ¢, if there exists an attribute correspondence
(S.s,T.t) in m?, we replace t everywhere with s; other-
wise, the reformulated query returns an empty result. Let
|@Q| be the size of Q. Thus, reformulating a query takes
time O(|Q)]), and the size of the reformulated query does
not exceed the size of Q.

Therefore, Step 1 takes time O(IT!_,n; - |Q|), which
is polynomial in the size of the p-mapping and does not
depend on the size of the data.

Step 2: Answering each reformulated query takes poly-
nomial time in the size of the data and the number of an-
swer tuples is polynomial in the size of the data. Because
there is a polynomial number of answer tuples and each
occurs in the answers of no more than Hleni queries,
summing up the probabilities for each answer tuple takes
time O(II!_,n;). Thus, Step 2 takes polynomial time in
the size of the mapping and the data. O

Theorem 2. Let pGM be a general p-mapping between
a source schema S and a target schema T'. Let Dg be an
instance of S. Let @ be an SPJ query with only equality
conditions over T.

The problem of computing Q***¢(Dg) with respect
to pGM is in PTIME in the size of the data and the
mapping. O

Proof We proceed in two steps to return all by-table an-
swers. In the first step, for each gm,, i € [1,n], we answer
@ according to gm; on Dg. The certain answer with re-
gard to gm; has probability Pr(gm;). SPJ queries with
only equality conditions are conjunctive queries. Accord-
ing to [1], we can return all certain answers in polynomial
time in the size of the data, and the number of certain
answers is polynomial in the size of the data. Thus, the
first step takes polynomial time in the size of the data
and the mapping.

In the second step, we sum up the probabilities of
each answer tuple. Because there are a polynomial num-
ber of answer tuples and each occurs in the answers of no
more than n reformulated queries, this step takes poly-
nomial time in the size of the data and the mapping.
O

Lemma 1. Let pM be a schema p-mapping. Let @ be
an SPJ query and @,, be @’s mirror query with respect
to pM. Let Dg be the source database and D7 be the
mirror target of Dg with respect to pM.

Then, t € Q'P'*(Dg) if and only if t € Q,,(Dr) and
t does not contain null value. O

Proof If: We prove t € Q*P'¢(Dg) by showing that we
can construct a mapping sequence seq such that for each
target instance D/ that is consistent with Dg and seg,
t € Q(Dy).

Assume query @ (and so @,,) contains n subgoals
(i.e., occurrences of tables in the FROM clause). Assume
we obtain ¢ by joining n tuples ti1,...,t, € D, each
in the relation of a subgoal. Consider a relation R that
occurs in Q. Assume ti,, ..., tg, (k1,...,k € [1,n]) are
tuples of R (for different subgoals). Let pM € pM be
the p-mapping where R is the target and let S be the
source relation of pM. For each j € [1,1], we denote the
id value of t, by t,.id, and the mapping value of ty,
by tx;.mapping. Then, ty, is consistent with the #,.id-th
source tuple in S and the mapping ¢ ;.mapping.

We construct the mapping sequence of R for seq as
follows: (1) for each j € [1,1], the mapping for the ¢, .id-
th tuple is t,.mapping; (2) the rest of the mappings are
arbitrary mappings in pM. To ensure the construction
is valid, we need to prove that all tuples with the same
id value have the same mapping value. Indeed, for every
Jyh € [1,1],5 # h, because ty; and ty, satisfy the pred-
icate (R;.id <> Rs.id OR Rj.mapping=Rs.mapping) in
Qm, if ty;.id=ty, .id then t;,.mapping=tj, .mapping.

We now prove for each target instance D/ that is
consistent with Dg and seq, t € Q(D/.). For each ¢;,i €
[1,n], we denote by t; the tuple in D/, that is consistent
with the ¢;.id-th source tuple and the ¢;.mapping map-
ping. We denote by R(t;),i € [1,n], the subgoal that t;
belongs to. By the definition of mirror target and also
because t does not contain null value, for each attribute
of R(t;) that is involved in @, t; has non-null value, and
so they are involved in the mapping t;.mapping. Thus,
t; has the same value for these attributes. So ¢ can be
obtained by joining ¢}, ...,¢,, and ¢t € Q(D%).

Only if: t € Q*P'¢(Dg), so there exists a mapping se-
quence seq, such that for each D/ that is consistent with
Dg and seq, t € Q(D?). Consider such a D/.. Assume
t is obtained by joining tuples t1,...,t, € D/, and for
each i € [1,n], t; is a tuple of subgoal R;. Assume t; is
consistent with source tuple s; and m;. We denote by ¢/
the instance in Dp whose id value refers to s; and map-
ping value refers to m;. Let A; be the set of attributes of
the subgoal R; that are involved in the query. Since ¢ is
a “certain answer”, all attributes in A; must be involved
in m;. Thus, ¢; and t; have the same value for these at-
tributes, and all predicates in @ hold on t},...,t.

Because D is consistent with Dg, for every pair of
tuples t; and t;,4,j € [1,n], of the same relation, ¢; and
t; are either consistent with different source tuples in
Dg, or are consistent with the same source tuple and
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the same possible mapping. Thus, predicate R;.id <>
R5.id OR R;.mapping=Ry.mapping in the mirror query
must hold on ¢ and t}. Thus, t € Q,(D7). O

Theorem 3. Let Q be an SPJ query and let pM be a
schema p-mapping. The problem of finding the proba-
bility for a by-tuple answer to @) with respect to pM is
#P-complete with respect to data complexity and is in
PTIME with respect to mapping complexity. O

Proof We prove the theorem by establishing three lem-
mas, stating that (1) the problem is in PTIME in the
size of the mapping; (2) the problem is in #P in the size
of the data; (3) the problem is #P-hard in the size of the
data.

Lemma 5 Let Q be an SPJ query and let pM be a
schema p-mapping. The problem of finding the probabil-
ity for a by-tuple answer to Q with respect to pM is in
PTIME in the size of the mapping. O

Proof We can generate all answers in three steps. Let
T1,...,T; be the relations mentioned in @’s FROM clause.
Let pM; be the p-mapping associated with table T;. Let
d; be the number of tuples in the source table of pM;.

1. For each seq' € seq, (pM)),...,seq" € seqy(pM;),
generate a target instance that is consistent with the
source instance and pM as follows. For each i € [1,1],
the target relation 7T; contains d; tuples, where the
j-th tuple (1) is consistent with the j-th source tuple
and the j-th mapping m/ in seq’, and (2) contains null
as the value of each attribute that is not involved in
mJ.

2. For each target instance, answer ) on the instance.
Consider only the answer tuples that do not contain
the null value and assign probability IT!_, Pr(seq*) to
the tuple.

3. For each distinct answer tuple, sum up its probabili-
ties.

According to the definition of by-tuple answers, the
algorithm generates all by-tuple answers. We now prove
it takes polynomial time in the size of the mapping. As-
sume each p-mapping pM; contains [; mappings. Then,
the number of instances generated in step 1 is IT lelgi,
polynomial in the size of pM. In addition, the size of
each generated target instance is linear in the size of the
source instance. So the algorithm takes polynomial time
in the size of the mapping. O

Lemma 6 Let Q be an SPJ query and let pM be a
schema p-mapping. The problem of finding the probabil-

ity for a by-tuple answer to QQ with respect to pM is in
#P in the size of the data. O

Proof According to Theorem 10, we can reduce the prob-
lem to answering queries on disjunctive p-databases, which
is proved to be in #P [31]. Also, Theorem 11 shows we
can do the reduction in polynomial time. Thus, the prob-
lem is in #P in the size of the data. O

Lemma 7 Consider the following query

Q: SELECT ‘true’
FROM T, J, T’
WHERE T.a = J.a AND J.b = T’.b

Answering Q with respect to pM is #P-hard in the
size of the data. O

Proof We prove the lemma by reducing the bipartite mono-
tone 2-DNF problem to the above problem.

Consider a bipartite monotone 2-DNF' problem where
variables can be partitioned into X = {x1,...,z,,} and
Y ={y1,...,yn}, and ¢ = C1V...VC}, where each clause
C; has the form x; A yi,z; € X,yr € Y. We construct
the following query-answering problem.

P-mapping: Let pM be a schema p-mapping contain-
ing pM and pM’. Let pM = (S,T,m) be a p-mapping
where S =< a >,T =<ad’ > and

m = {({(CL, a'/)}’ '5)7 (Q)v 5)}

Let pM' = (8, T', m’) be a p-mapping where S’ =< b >,
T =<V > and

m’ = {({(b,bl)}, '5)7 (@, 5)}

Source data: The source relation S contains m tu-
ples: z1,...,2Zm. The source relation S’ contains n tu-
ples: y1, ..., yn. The relation J contains [ tuples. For each
clause C; = x; Ay, there is a tuple (z;,yx) in J.

Obviously the construction takes polynomial time.
We now prove the answer to the query is tuple true with
probability %, where #¢ is the number of variable
assignments that satisfy ¢. We prove by showing that for
each variable assignment vg1,...,Vzm, Uy, ..., Vyn that
satisfies , there exists a mapping sequence seq such that
true is a certain answer with respect to seq and the source
instance, and vice versa.

For each variable assignment vg1, ..., Vgm, Uy, - -
that satisfies ¢, there must exist j and & such that v,; =
true, vy, =true, and there exists C; = x; A yi in . We
construct the mapping sequence for pM such that for
each j € [1,m], if v,; =true, m? = ({(a,d’)},.5), and if
ver =false, m? = (,.5). We construct the mapping se-
quence for pM’ such that for each k € [1,n], if vy, =true,
m'* = ({(b,)},.5), and if vy, =false, m'* = (0,.5)
Any target instance that is consistent with the source
instance and {seq, seq'} contains z; in T" and y; in T".
Since C; € ¢, J contains tuple (z;,yx) and so true is a
certain answer.

For each mapping sequence seq for pM and seq’ for
pM’, if true is a certain answer, there must exist j €
[1,m] and k € [1,n], such that x; is in any target in-
stance that is consistent with S and seq, yi is in any
target instance that is consistent with S’ and seq’, and
there exists a tuple (z;,yx) in J. Thus, m? € seq must be
({(a,a")},.5) and m'* € seq’ must be ({(b,b')},.5). We
construct the assignments vg1,...,Vzm, Uyly .-+, Uyn as
follows. For each j € [1,m], if we have m? = ({(a,a’)},.5)

5 Uyn
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in seq, x; =true; otherwise, x; =false. For each k €
[1,n], if m* = ({(b,¥')},.5) in seq, yy =true; otherwise,
yr =false. Obviously, the values of x; and yy, are true, ¢
contains a term x; Ay, and so ¢ is satisfied.

Counting the number of variable assignments that
satisfy a bipartite monotone 2DNF Boolean formula is
#P-complete. Thus, answering query @ is #P-hard. O

Note that in Lemma 7 @) contains two joins. Indeed,
as stated in the following conjecture, we suspect that
even for a query that contains a single join, query an-
swering is also #P-complete. The proof is still an open
problem.

Conjecture 1 Let pM be a schema p-mapping containing
pM and pM’. Let pM = (S, T, m) be a p-mapping where
S =

<a,b>T=<c>and

m = {({(a,0)},.5), {(b,¢)},.5)}.

Let pM’ = (S',7’,m’) be a p-mapping where S’ =<
d> T =<e>and

m’ = {({(d,e)}, 5),(0,.5)}.
Consider the following query

Q: SELECT ‘true’
FROM T1, T2
WHERE T1.c=T2.e

Answering @ with respect to pM is #P-hard in the
size of the data.

Theorem 4: Given an SPJ query and a schema p-mapping, according to (2)

returning all by-tuple answers without probabilities is in
PTIME with respect to data complexity. ([l

Proof According to the previous lemma, we can gener-
ate all by-tuple answers by answering the mirror query
on the mirror target. The size of the mirror target is
polynomial in the size of the data and the size of the
p-mapping, so answering the mirror query on the mirror
target takes polynomial time. O

Lemma 2. Let pM be a schema p-mapping between S
and T. Let @ be a non-p-join query over T and let Dg
be an instance of S. Let (¢, Pr(t)) be a by-tuple answer
with respect to Ds and pM. Let T(t) be the subset of
T(Dg) such that for each D € T(t), t € Q'**¢(D). The
following two conditions hold:

1. T(t) # 0;
2. P’I‘(t) =1- HDET(t%(t,p)EQ"“bLe(D)(1 — p) O

Proof We first prove (1). Let T be the relation in @
that is the target of a p-mapping and let pM be the
p-mapping. Let seq be the mapping sequence for pM
with respect to which ¢ is a by-tuple answer. Because
@ is a non-p-join query, there is no self join over 7. So

there must exist a target tuple, denoted by ¢;, that is
involved in generating ¢. Assume this target tuple is con-
sistent with the ¢-th source tuple and a possible mapping
m € pM. We now consider the i-th tuple database D,
in T(Dg). There is a target database that is consistent
with D; and m, and the database also contains the tuple
t;. Thus, t is a by-table answer with respect to D; and
m, so D; € T(t) and T(t) # 0.

We next prove (2). We denote by m(D;) the set of
mappings in m, such that for each m € m(D;), t is a
certain answer with respect to D; and m. For the by-
table answer (t,p;) with respect to D;, obviously p;, =
Zmefn(Di) Pr(m).

Let d be the number of tuples in Dg. Now consider a
sequence seq =< m!',...,m? >. As long as there exists
i € [1,d], such that m* € m(D;), t is a certain answer
with respect to Dg and seq. The probability of all se-
quences that satisfy the above condition is 1 — I7& | (1 —
Yomem(py) Pr(m)) =1 = Hper 1.p)eqrave(py (1 — p).
Thus, P?”‘(t) =1- HDET(t),(t,p)Emele(D)(1 - p) O

Theorem 5. Let pM be a schema p-mapping and let Q
be a non-p-join query with respect to pM. Answering Q
with respect to pM in by-tuple semantics is in PTIME
in the size of the data and the mapping. ([l

Proof We first prove Algorithm NONP JOIN generates all
by-tuple answers. According to Lemma 2, we should first
answer () on each tuple database, and then compute the
probabilities for each answer tuple. In Algorithm NON-
PJoin, since we introduce the id attribute and return its
values, Step 2 indeed generates by-tuple answers for all
tuple databases. Finally, Step 3 computes the probability
in the lemma.

We next prove Algorithm NONPJOIN takes polyno-
mial time in the size of the data and the size of the
mapping. Step 1 goes through each possible mapping to
add one more correspondence and thus takes linear time
in the size of the mapping. In addition, the size of the
revised mapping is linear in the size of the original map-
ping. Since Algorithm BYTABLE takes polynomial time
in the size of the data and the mapping, so does Step 2 in
Algorithm NONPJOIN; in addition, the size of the result
is polynomial in the size of the data and the mapping.
Step 3 of the algorithm goes over each result tuple gen-
erated from Step 2, doing the projection and computing
the probabilities according to the formula, so takes linear
time in the size of the result generated from Step 2, and
so takes also polynomial time in the size of the data and
the mapping. O

Lemma 3. Let pM be a schema p-mapping. Let Q be a
projected p-join query with respect to pM and let J be
a maximal p-join partitioning of Q. Let Q j1,..., @, be
the p-join components of Q) with respect to J.

For any instance Dg of the source schema of pM and
result tuple t € Q*P!¢(Dyg), the following two conditions
hold:
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1. For each i € [1,n], there exists a single tuple ¢; €

f;;ple(Ds), such that tq, ..., %, generate t when joined
together.

2. Let t1,...,t, be the above tuples. Then Pr(t) =

I, Pr(t,). O

Proof We first prove (1). The existence of the tuple is
obvious. We now prove there exists a single such tu-
ple for each ¢ € [1,n]. A join component returns all at-
tributes that occur in @ and the join attributes that join
partitions. The definition of maximal p-join partitioning
guarantees that for every two partitions, they are joined
only on attributes that belong to relations involved in p-
mappings. A projected-p-join query returns all such join
attributes, so all attributes returned by the join compo-
nent are also returned by @Q. Thus, every two different
tuples in the result of the join component lead to differ-
ent query results.

We now prove (2). Since a partition in a join compo-
nent contains at most one subgoal that is the target of
a p-mapping in pM, each p-join component is a non-p-
join query. For each i € [1,n], let Seg; be the mapping
sequences with respect to which ¢; is a by-tuple answer.
Obviously, Pr(ti) = >_ . eseq, Pr(seq).

Consider choosing a set of mapping sequences S =
{seqy, ..., seq,}, where seq; € Seq; for each i € [1,n].
Obviously, ¢ is a certain answer with respect to S. Be-
cause choosing different mapping sequences for differ-
ent p-mappings are independent, the probability of S is
II , Pr(seq;). Thus, we have

Pr(t) = Z I, Pr(seq;)
seq, €5€q, ..., seq,, E56q,,
=11, Z Pr(seq;)
seq;€5€q;
== HinzlpT(ti)
This proves the claim. O

Theorem 6. Let pM be a schema p-mapping and let
Q be a projected-p-join query with respect to pM. An-
swering Q with respect to pM in by-tuple semantics is
in PTIME in the size of the data and the mapping. [

Proof We first prove Algorithm PROJECTEDPJOIN gen-
erates all by-tuple answers for projected-p-join queries.
First, it is trivial to verify that the partitioning generated
by step 1 satisfies the two conditions of a p-join parti-
tioning and is maximal. Then, step 2 and step 3 com-
pute the probability for each by-tuple answer according
to Lemma 3.

We next prove it takes polynomial time in the size of
the mapping and in the size of the data. Step 1 takes time
polynomial in the size of the query, and is independent
of the size of the mapping and the data. The number of
p-join components is linear in the size of the query and
each is smaller than the original query. Since Algorithm

NoNPJoIN takes polynomial time in the size of the data
and the size of the mapping, Step 2 takes polynomial
time in the size of the mapping and the size of the data
too, and the size of each result is polynomial in size of the
data and the mapping. Finally, joining the results from
Step 2 takes polynomial time in the size of the results,
and so also polynomial in the size of the data and the
mapping. O

Theorem 8. Let gpM be a schema group p-mapping
and let @@ be an SPJ query. The mapping complexity
of answering @ with respect to gpM in both by-table
semantics and by-tuple semantics is in PTIME. O

Proof We first consider by-table semantics and then con-
sider by-tuple semantics. For each semantics, we prove
the theorem by first describing the query-answering algo-
rithm, then proving the algorithm generates the correct
answer, and next analyzing the complexity of the algo-
rithm.

By-table semantics: I. First, we describe the algorithm
that we answer query ) with respect to the group p-
mapping gpM. Assume @)’s FROM clause contains rela-
tions T4, ..., T;. For each i € [1,1], assume T; is involved
in group p-mapping gpM;, which contains g; groups (if
T; is not involved in any group p-mapping, we assume
it is involved in an identity p-mapping that corresponds
each attribute with itself). The algorithm proceeds in
five steps.

Step 1. We first partition all target attributes for 71, ...,7;
as follows. First, initialize each partition to contain at-
tributes in one group (there are 22:1 gi groups). Then,
for each pair of attributes a; and as that occur in the
same predicate in @, we merge the two groups that ¢;
and to belong to. We call the result partitioning an in-
dependence partitioning with respect to Q and gpM.
Step 2. For each partition p in an independence par-
titioning, if p contains attributes that occur in @, we
generate a sub-query of @ as follows. (1) The SELECT
clause contains all variables in () that are included in p,
and an id column for each relation that is involved in
p (we assume each tuple contains an identifier column
id; in practice, we can use the key attribute of the tuple
in place of id); (2) The FROM clause contains all relations
that are involved in p; and (3) The WHERE clause contains
only predicates that involve attributes in p. The query
is called the independence query of p and is denoted by
Q(p)-

Step 8. For each partition p, let pMq,...,pM, be the
p-mappings for the group of attributes involved in p.
For each m' € pMy,...,m" € pM,, rewrite Q(p) w.r.t.
m!, ..., m" and answer the rewritten query on the source
data. For each returned tuple, assign II7;m’ as the
probability and add n columns mappingy, ..., mapping,,
where the column mapping;,i € [1,n], has the identifier
for m; as the value. Union all result tuples.
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Step 4. Join the results of the sub-queries on the id at-
tributes. Assume the result tuple ¢ is obtained by joining
t1,. .., tg, then Pr(t) = IIE | Pr(ty).

Step 5. For tuples that have the same values, assuming
to be tuple t, for attributes on @Q’s returned attributes
but different values for the mapping attributes, sum up
their probabilities as the probability for the result tuple
t.

II. We now prove the algorithm returns the correct
by-table answers. For each result answer tuple a, we
should add up the probabilities of the possible mappings
with respect to which a is generated. This is done in
Step 5. So we only need to show that given a specific
combination of mappings, the first four steps generate
the same answer tuples as with normal p-mappings. The
partitioning in Step 1 guarantees that different indepen-
dence queries involve different p-mappings and so Step
2 and 3 generate the correct answer for each indepen-
dence query. Step 4 joins results of the sub-queries on
the id attributes; thus, for each source tuple, the first
four steps generate the same answer tuple as with nor-
mal p-mappings. This proves the claim.

ITI. We next analyze the time complexity of the al-
gorithm. The first two steps take polynomial time in the
size of the mapping and the number of sub-queries gener-
ated by Step 2 is polynomial in the size of the mapping.
Step 3 answers each sub-query in polynomial time in the
size of the mapping and the result is polynomial in the
size of the mapping. Step 4 joins a set of results from
Step 3, where the number of the results and the size of
each result is polynomial in the size of the mapping, so
it takes polynomial time in the size of the mapping too
and the size of the generated result is also polynomial in
the size of the mapping. Finally, Step 5 takes polynomial
time in the size of the result generated in Step 4 and so
takes polynomial time in the size of the mapping. This
proves the claim.

By-tuple semantics: First, we describe the algorithm
that we answer query @ with respect to the group p-
mapping gpM . The algorithm proceeds in five steps and
the first two steps are the same as in by-table semantics.
Step 8. For each partition p, let pM,...,pM, be the
p-mappings for the group of attributes involved in p. For
each mapping sequence seq over pMy,...,pM,, answer
Q(p) with respect to seq in by-tuple semantics. For each
returned tuple, assign Pr(seq) as the probability and add
a column seq with an identifier of seq as the value.

Step 4. Join the results of the sub-queries on the id at-
tributes. Assume the result tuple ¢ is obtained by joining
t1,...,tx, then Pr(t) = IIE | Pr(ty).

Step 5. Let tq,...,t, be the tuples that have the same
values, tuple ¢, for attributes on @’s returned attributes
but different values for the seq attributes, sum up their
probabilities as the probability for the result tuple t.

We can verify the correctness of the algorithm and
analyze the time complexity in the same way as in by-
table semantics. O

Proposition 1. For each n > 1, MZE! ¢ M%,. O

Proof We first prove for each n > 1, ./\/lg}l C M%p, and
then prove there exists an instance in M, that does
not have an equivalent instance in Mg;l

(1) We prove M%+t € M7, by showing for each (n+
1)-group p-mapping we can find a n-group p-mapping
equivalent to it. Consider an instance gpM = (S, T,pM) €
Mgéﬁl, where pM = {pM,...,pM,1}. We show how
we can construct an instance gpM’ € M, that is equiv-
alent to gpM. Consider merging pM; = (S1,71,my)
and pMs = (S9,T»,my) and generating a probabilis-
tic mapping pMi_o = (S1 U S, Th U T, my_»), where
m; _ includes the Cartesian product of the mappings in
m; and msy. Consider the n-group p-mapping gpM’' =
(S, T,pM’), where pM’ = {pMy_o,pM3,...,pMp11}.
Then, gpM and gpM’ describe the same mapping.

(2) We now show how we can construct an instance
in M%, that does not have an equivalent instance in
MEEL T S and T contain less than n attributes, M%, =
(¢ and the claim holds. Otherwise, we partition attributes
in S and T into {{s1},...,{Sn-1},{Sn,--.,8m}} and
{{t1}, s {tn=1},{tn, ..., t1}}. Without losing general-
ity, we assume m < [. For each i € [1,n — 1], we define

m; = {({(si,%:)},0.8), (0,0.2)}.

In addition, we define

1
m,, = {({(sn,tn)}, m), cee
1
({(smstn)}, m)}

We cannot further partition S into n + 1 subsets such
that attributes in different subsets correspond to differ-
ent attributes in T'. Thus, we cannot find a (n+ 1)-group
p-mapping equivalent to it. O

Proposition 2. Given a p-mapping pM = (5,7, m),
we can find in polynomial time in the size of pM the
maximal n and an n-group p-mapping gpM, such that
gpM is equivalent to pM. O

Proof We prove the theorem by first presenting an al-
gorithm that finds the maximal n and the equivalent n-
group p-mapping gpM, then proving the correctness of
the algorithm, and finally, analyzing its time complexity.
1. We first present the algorithm that takes a p-mapping

pM = (S,T,m), finds the maximal n and the n-group
p-mapping that is equivalent to pM.

Step 1. First, partition attributes in S and T. Initial-
ize the partitions such that each contains a single at-
tribute in S or T. Then for each attribute correspon-
dence (s,t) occurring in a possible mapping, if s and ¢
are in different partitions, merge the two partitions. Let
P ={p1,...,pn} be the result partitioning.

Step 2. For each partition p;,i € [1,n], and each m €
m, select the correspondences in m that involve only
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attributes in p;, use them to construct a sub-mapping,
and assign Pr(m) to the sub-mapping. We compute the
marginal probability of each sub-mapping.

Step 3. For each partition p;,i € [1,n|, examine if its
possible mappings are independent of the possible map-
pings for the rest of the partitions. Specifically, for each
partition pj;,j > 4, if there exists a possible mapping
m for p; and a possible mapping m’ for p;, such that
Pr(m|m') # Pr(m), merge p; into p;. For the new par-
tition pj;, update its possible sub-mappings and their
marginal probabilities. Step 3 generates a set of parti-
tions, each with a set of sub-mappings and their proba-
bilities.

Step 4. Each partition generated in Step 3 is associated
with a p-mapping. The set of all p-mappings forms the
group p-mapping gpM that is equivalent to pM.

II. We now prove the correctness of the algorithm.
It is easy to prove gpM is equivalent to pM. Assume
gpM is an n-group p-mapping. We next prove n is max-
imal. Consider another group p-mapping gpM’. We now
prove for each p-mapping in gpM’, it either contains all
attributes in a partition generated in Step 3 or contains
none of them. According to the definition of group p-
mapping, each p-mapping in gpM’ must contain either
all attributes or none of the attributes in a partition in
P. In addition, every two partitions in P that are merged
in Step 3 are not independent and have to be in the same
p-mapping in gpM' too. This proves the claim.

III. We next consider the time complexity of the al-
gorithm. Let m be the number of mappings in pM, and
a be the minimum number of attributes in R and in S.
Step 1 considers each attribute correspondence in each
possible mapping. A mapping contains no more than a
attribute correspondences, so Step 1 takes time O(ma).
Step 2 considers each possible mapping for each partition
to generate sub-mappings. The number of partitions can-
not exceed a, so Step 2 also takes time O(ma). Step 3
considers each pair of partitions, and takes time O(ma?).
Finally, Step 4 outputs the results and takes time O(ma).
Overall, the algorithm takes time O(ma?), which is poly-
nomial in the size of the full-distribution instance. [

Theorem 9. Let pC be a schema p-correspondence, and
@ be an SPJ query. Then, @ is p-mapping independent
with respect to pC if and only if for each pC C pC, Q is
a single-attribute query with respect to pC. ]

Proof We prove for the case when there is a single p-
correspondence in pC' and it is easy to generalize our

proof to the case when there are multiple p-correspondences

in pC.

If: Let pM; and pMs be two p-mappings over S and T'
where pC(pM;) = pC(pMs). Let Dg be a database of
schema S. Consider a query  over T'. Let ¢; be the only
attribute involved in query Q. We prove Q(Dg) is the
same with respect to pM; and pM> in both by-table and
by-tuple semantics.

We first consider by-table semantics. Assume S has n
attributes s1, ..., s,. We partition all possible mappings
in pM; into my, ..., My, such that for any m € m;,7 €
[1,n], m maps attribute s; to ¢;, and for any m € my,
m does not map any attribute in S to ¢;. Thus, for each
i € [1,n], Pr(m;) = Pr(ci;).

Consider a tuple t. Assume t is an answer tuple with
respect to a subset of possible mappings m C m. Because
Q contains only attribute ¢;, for each ¢ € [0,n], either
m; € m or m; Nm = 0. Let my,,..., Mg, k1,....k €
[0,n], be the subsets of m such that my, C m for any
j € [1,1]. We have

1 1
Pr(t) = ZPr(mki) = Z Pr(ck,;)-

Now consider pMs. We partition its possible map-
pings in the same way and obtain my,...,m,,. Since Q
contains only attribute ¢;, for each ¢ € [0,n], the result
of @ with respect to m’ € m/ is the same as the result
with respect to m € m;. Therefore, the probability of ¢
with respect to pMs is

l l
Pr(t) = Z Pr(mj},) = Z Pr(cr,;)-

Thus, Pr(t) = Pr(t)’ and this proves the claim.

We can prove the claim for by-tuple semantics in a
similar way where we partition mapping sequences. We
omit the proof here.

Only if: We prove by showing that for every query @
that contains more than one attribute in a relation being
involved in a p-correspondence, there exist p-mappings
pM; and pMs and source instance Dg, such that Q(Dg)
obtains different results with respect to pM; and pMs.
Assume query @ contains attributes a’ and b’ of T.
Consider two p-mappings pM; and pMs, where

pMi = {({(a,a’), (b,0")},.5), ({(a,a")},.3), ({(b,¥)}, .2)}
pMs = {({(aval)v (b, b/)}a 6), ({(aa a/)}v 2), ({(b’ b/)}v 1),
@,.1)}

One can verify that pC(pM;) = pC(pMs).

Consider a database Dg, such that for each tuple of
the source relation in pM; and pMs,, the values for at-
tributes a and b satisfy the predicates in ). Since only
when the possible mapping {(a,a’), (b, ')} is applied can
we generate valid answer tuples, but the possible map-
ping {(a,a’), (b,v’)} has different probabilities in pM;
and pMa, Q(Dg) obtains different results with respect
to pM; and pMs in both semantics. O

Corollary 1. Let pC be a schema p-correspondence, and
@ be a p-mapping independent SPJ query with respect
to pC. The mapping complexity of answering Q with
respect to pC in both by-table semantics and by-tuple
semantics is in PTIME. O
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Proof By-table: We revise algorithm By-TABLE, which
takes polynomial time in the size of the schema p-mapping,
to compute answers with respect to schema p-correspond-
ences. At the place where we consider a possible map-
ping in the algorithm, we revise to consider a possible at-
tribute correspondence. Obviously the revised algorithm
generates the correct by-table answers and takes polyno-
mial time in the size of the mapping.

By-tuple: We revise the algorithm in the proof of
Theorem 3, which takes polynomial time in the size of
the schema p-mapping, to compute answers with respect
to schema p-correspondences. Everywhere we consider a
possible mapping in the algorithm, we revise to consider
a possible attribute correspondence. Obviously the re-
vised algorithm generates the correct by-tuple answers
and takes polynomial time in the size of the mapping. (]

Theorem 10. Let pM = (5,7, m) be a p-mapping and
Dg be an instance of S.

1. There is a unique by-table core universal solution and
a unique by-tuple core universal solution up to iso-
morphism for Dg with respect to pM.

2. Let @ be a conjunctive query over T. We denote by
Q(pD) the results of answering ) on pD and discard-
ing all answer tuples containing null values. Then,

Qtable(DS) — Q(pD%gble).

Similarly, let pDE?' be the by-tuple core universal
solution for Dg under pM. Then,

Qtuple(DS) _ Q(pD;uPle). 0

Proof We first consider by-table semantics and then con-
sider by-tuple semantics. For each semantics, we first
present an algorithm that generates the core universal
solution, then prove the generated solution (1) is a core
universal solution and (2) is unique, and last prove an-
swering ) on the core universal solution obtains the same
results as answering () on the source data with respect
to pM.

By-table semantics: 1. First, we describe the algo-
rithm that generates a by-table core universal solution
for Dg with respect to pM. The algorithm proceeds in
two steps.

Step 1. For each mapping m € m, generate the core
universal solution for Dg with respect to m, denoted by
(Dr, Pr(Dr)), as follows.

1. For each tuplet € Dg, apply m to obtain ¢’ as follows:
(1) for each attribute a; € T such that there exists
an attribute correspondence (as,a:) € m, the value
of a; in t' is the same constant as the value of ag in
t; (2) for the rest of the attributes a € T, the value
of a in t’ is a fresh labeled null.

2. If there does not exist a tuple in Dp that has the
same constant values as t’, insert ¢’ to Drp.

3. Set Pr(Dr) to Pr(m).

Step 2. Let pDp be a p-database with all possible databases
generated as described. Examine each pair of possible
databases (Dr, Pr(Dr)) and (D%, Pr(D%)). If Dy and
D’ are isomorphic, replace them with a single possible
database (Dr, Pr(Dr) + Pr(D/)).

II. We now prove the result pDr is a by-table core
universal solution. First, the way we generate the p-
database guarantees that it is a by-table solution.

Second, we show for every solution pD’. for Dg with
respect to pM, we can construct a homomorphism map-
ping from pDy to pD/.. Consider (Dr, Pr(Dr)) € pDr.
Let m(D7) C m be the mappings that are involved in
generating Dr. Each possible mapping in m(D7) must
correspond to a possible database D7 € pD/. and dif-
ferent mappings can correspond to the same possible
database. Let D/.(m(D7)) C pD/ be the set of possi-
ble databases that together correspond to all mappings
in m(Dr). We define the homomorphism mapping as
Dy — pDL.(m(Dr)). (1) Because for each m € m(t), Dp
is a core universal solution, for every D). € D%.(m(Dr)),
there is a homomorphism from Dr to D/.. (2) Pr(Dr) =
Zmem(DT) Pr(m) = ZDGD’T(m(DT)) Pr(D). (3) For any
DY D% € pDr,DL # D%, h(DL) and h(D%) do not
overlap because otherwise, there are two possible map-
pings that correspond to different possible databases in
pDp but the same possible database in pDZ., so D%«
and D2 should be isomorphic and should be merged in
Step 2. All possible databases in pD/. together cover all
mappings, and so we can partition h(pD1),...,h(pDy).
Thus, pD7 is a universal solution.

Finally, the way we generate pDp guarantees that in
each possible database, any two tuples are not homomor-
phic. So pDr is a core universal solution.

III. Next, we prove pDy is unique. Assume there is
another p-database pD/. that is also a core universal so-
lution. We now prove there exists an isomorphism be-
tween pDp and pD/.. Because pDr is a universal so-
lution, there is a homomorphism h from pDr to pD~.
Similarly, there is a homomorphism A’ from pD’. to pDry.
Thus, the number of possible databases in pDr and pD/,
must be the same and both h and h’ are one-to-one map-
pings. Now we prove for every D € pDr, h/(h(D)) = D €
pDr and so D and h(D) are isomorphic. Assume in con-
trast, this statement does not hold. Then, because the
numbers of databases in pDy and pD/. are finite, there
must be a database D € pDr for which there exist & > 1
databases in pDr such that h'(h(D)) = Dy, h/(h(D;)) =
Dy, ...,h (h(Dg-1)) = Dy, and h'(h(Dg)) = D. For each
i € [1,k], D is homomorphic to D; and D; is homo-
morphic to D. Thus, D, Dy,..., Dy are all isomorphic.
Now consider a p-database pDg that contains all possi-
ble databases in pDr except D1, ..., Dj. This database
is also a by-table solution of Dg. However, as pDg con-
tains less databases, there does not exist a homomor-
phism from pDp to pDy, contradicting the fact that pDr
is a universal solution. Thus, pDr and pD/. are isomor-
phic.



Data Integration with Uncertainty

29

IV. Finally, we prove that Q'**¢(Dg) = Q(pD7r) by
showing that for every tuple ¢, the probability of ¢ in
Q!"'¢(Dyg) is the same as in Q(pDr) (the probability can
be 0). We denote by m(t) the set of mappings with re-
spect to which ¢ is a certain answer (m(t) can be empty),
and by D(m(t)) the set of possible databases related to
mappings in m(t). Obviously, Pr(m(t)) = Pr(D(m(t))).
So we only need to prove that (1) for each D € D(m(t)),
t € Q(D), and (2) for each D ¢ D(m(t)), t ¢ Q(D).
First, for each m € m(t), there exists at least a source
tuple ts € Dg on which answering () obtains t. Then,
according to the way we generate D(m), answering @
on t4's corresponding tuple in D(m) must also obtain
t. Second, consider a database D ¢ m(t). Let m’ be
the possible mapping with respect to which D is consis-
tent with Dg. The way we construct pD guarantees that
m’ & m(t). Assume in contrast, answering () on D gen-
erates t. Thus, there must exist a tuple t; € D on which
answering () obtains ¢. Accordingly, there must exist a
source tuple t5 € D on which answering () can generate
t as a certain answer with respect to m’, contradicting
the fact that ¢ is not a certain answer with respect to
m/. This proves the claim.

By-tuple semantics: Here we generate the by-tuple
core universal solution in a similar way except that we
consider each mapping sequence with the same length as
the number of tuples in Dg, rather than each possible
mapping. The rest of the proof is similar to the by-table
semantics. O

Lemma 4. Let pM = (S, T, m) be a p-mapping and Dg
be an instance of S.

The by-tuple core universal solution for Dg under
pM can be represented as a disjunctive p-database. [

Proof We describe how we construct such disjunctive p-
database, denoted by pDy., and show it is equivalent
to the p-database we constructed in the proof of The-
orem 10.

The disjunctive p-database pD" has attributes in T
and a key column that is the key of the relation. For the
i-th tuple ¢t5 in S and each m € m, generate a target
tuple t;, such that (1) for each attribute correspondence
(as,at) € m, the value of a; is the same as the value of a,
in tg; (2) for each attribute a; in T' that is not involved
in any attribute correspondence in m, the value of a; is a
fresh labeled null; and (3) the value of the key attribute
is i. The probability of the tuple is Pr(m). Let n be the
number of tuples in Dg and [ be the number of mappings
in pM. Generating the target instance takes time O(I-n),
polynomial in the size of the data and the mapping.

We now show the equivalence of pDy. and pDr, the
p-database constructed as described in the proof of The-
orem 10. The disjunctive p-database pDV is equivalent
to a p-database pD’ that contains n' possible worlds,
in each of which the possible database corresponds to a
mapping sequence of length n, which is isomorphic to

the p-database we generated in the first step towards
generating pDp. This proves the claim. U

Theorem 11. Let pM = (S,T,m) be a p-mapping and
Dg be an instance of S.

Generating the by-table or by-tuple core universal
solution for Dg under pM takes polynomial time in the
size of the data and the mapping. O

Proof Let n be the number of source tuples and [ be
the number of possible mappings. We first examine the
time complexity of generating the by-table core universal
solution. In the algorithm described in the proof of The-
orem 10, the first step takes time O(n - 1). In the second
step, we basically compare the constant values of tuples
so it takes time O(n?(?). Thus, the algorithm takes time
O(n?1?), which is polynomial in the size of the data and
the size of the mapping.

We now examine the time complexity of generating
the by-tuple disjunctive p-database solution. In the algo-
rithm described in the proof of Lemma 4, for each source
tuple and each mapping, we generate a target tuple. So
the algorithm takes time O(n - [), which is linear in the
size of the data and the size of the mapping. ([l

Theorem 13. Let pGM be a GLAV p-mapping between
a source schema S and a target schema T'. Let Dg be an
instance of S.

Generating the by-table core universal solution for
Dg under pM takes polynomial time in the size of the
data and the mapping. O

Proof For each possible GLAV mapping m € pGM, gen-

erating the core universal solution takes polynomial time [11]

in the size of the data and the size of m. The number of
core universal solutions we need to generate is the same
as the number of possible mappings in pGM . Thus, gen-
erating the by-table core universal solution for Dg under
pM takes polynomial time in the size of the data and the
size of the p-mapping. O

Theorem 14. Let pM; = (R, S, my) and pMy = (S, T, m3)
be two p-mappings. Between R and T there exists a
unique p-mapping, pM, that is the composition of pM;
and pMs in both by-table and by-tuple semantics and
we can generate pM in polynomial time. U

Proof We prove the theorem by first describing an algo-
rithm that generates the composition of two mappings
and analyzing the complexity of the algorithm, then prov-
ing it is both the by-table composition and the by-tuple
composition, and finally showing it is unique.

I. We generate the composition mapping pM in two
steps.

Step 1. For each m; € mj and mo € mgy, generate the
composition of my and ms as follows. For each correspon-
dence (r,s) € m; and each correspondence (s,t) € ma,
add (r,t) to my o ma. The probability of mj o mqy is set
to Pr(my) - Pr(ms).
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Step 2. Merge equivalent mappings generated in the
previous step and take the sum of their probabilities as
the probability of the merged mapping.

Let m be the number of mappings in pM; and n be
the number of mappings in pMs,. The first step of the
algorithm takes time O(m - n) and the second step of
the algorithm takes time O(m?n?). Thus, the algorithm
takes time O(m?n?), polynomial in the size of the input.

II. We now prove pM is a composition of pM; and
pMs. We first consider the by-table semantics. It is easy
to prove the “if” side in Definition 22 so we only prove
the “only if” side.

Consider an instance Dg of R and an instance Dr
of T where Dr is consistent with Dp with probability
p. We now describe how we construct a set of instances
Dg of S such that the three conditions in Definition 22
hold. Let m be the set of mappings in pM with respect
to which Dy is consistent with Dg. For each m € m, ac-
cording to the way we construct pM , there must be a list
of mappings m and a list of mappings mo with the same
length, such that for the i-th mapping m{ € m; and the
i-th mapping m$ € Mo, composing them obtains m. For
each 7, construct the core universal solution of Dgr with
respect to m{ and denote it by Dg. Obviously, g is con-
sistent with D with probability Pr(m}). The way we
construct pM also guarantees that Dy is consistent with
Dg with probability Pr(m3). Finally, for an instance Dg
of S that is not isomorphic to any database in m, it can-
not happen that Dg is consistent with Dr and D7 is
consistent with Dg. Thus, p =", Pr(m})Pr(m}).

The proof for by-tuple semantics is similar, except
that we consider each mapping sequence.

III. We prove for by-table semantics and the proof
for by-tuple semantics is similar. Assume there exists
another p-mapping pM’ that is the composition of pM;
and pM,. Assume pM’ contains a possible mapping m
that does not occur in pM. Then, there must exist an
instance Dr of T  that is consistent with D g with respect
to m but not with respect to any mapping in pM . Thus,
there must exist a set of instances of S that satisfy the
three conditions in the definition, leading to the contra-
dictory fact that Dy should also be consistent with Dp
with respect to pM. This proves the claim. O

Theorem 15. N-group (n > 1) p-mappings are not
closed under mapping composition. O

Proof We show a counter example where the composi-
tion of two 2-group p-mappings can not be represented
as a 2-group p-mapping.

Let pM; be a 2-group p-mapping between R(a,b,c)
and S(a’,b, '), where attributes in R are partitioned
into {a} and {b,c}, and attributes in S are partitioned
into {a’} and {¥,c'}:

pM, = {pMy,pMi},
pMy = {({(a,a")}, 1)},
pM; = {({(b,1), (c,¢)},.5), ({(b,¢), (¢, 1)}, .5)}.

Let pMs be a 2-group p-mapping between S(a’, V', ¢’)
and T'(a”,b"”,c"), where attributes in S are partitioned
into {a’, b’} and {c¢'}, and attributes in T" are partitioned
into {a”,b"} and {c¢’}, and the two p-mappings are

pMs> = {pM,, pM,},

pMz = {({(d’,a"), (V',0")},.5), ({(a, "), (V',a")}, .5)},
pMé = {({(6/76//)}7 1)}

The composition of pMgrs and pMgr contains four
possible mappings, shown as follows:

pM; = {({(a,a"), (b,b"), (¢, ")}, 25),
({(a.b"). (b.a"). (c. ")}, 25),
({(a,a”), (b.¢"). (e ")}, 25),

({(a,b"), (b, "), (e,a")}, 25)).

In this mapping, R’s attribute b can be mapped to
any attribute in 7, and thus there does not exist an
equivalent 2-group p-mapping. O

Theorem 16. Let pM = (S,7,m) be a p-mapping.
Then, pM has an inverse p-mapping if and only if

— m contains a single possible mapping (m, 1);
— each attribute in S is involved in an attribute corre-
spondence in m. O

Proof If: Construct a p-mapping pM’ = (T, S,m’) where
m’ contains a single mapping m’ and for each correspon-
dence (s,t) € m, there is a correspondence (t, s) € m’.

If we compose pM and pM’ in the way we described
in the proof of Theorem 14, we obtain a p-mapping be-
tween S and S that contains a single possible mapping,
where the mapping maps each attribute to itself. Thus,
the result is an identical p-mapping and pM’ is an inverse
of pM.

Only if: We show that if any of the conditions does
not hold, we cannot generate an inverse mapping of pM.
First, assume m contains two possible mappings m, and
ms and both of them have inverse mappings, denoted by
ml_1 and mz_l. Then, if there exists a p-mapping pM’
that is the inverse of pM, it should contain both mj!
and my 1 as possible databases. However, a mapping has
a unique inverse mapping, so composing m; with mg !
does not obtain the identical mapping. Thus, composing
pM with pM’ does not obtain the identical mapping.

Now consider a p-mapping which satisfies the first
condition, but not the second. Let a be the source at-
tribute that is not involved in any attribute correspon-
dence in m. Then for any mapping m’ from T to S,
composing m with m’ does not map m to any attribute
so the result is not an identical mapping. This proves the
claim. |

Theorem 17. Let pC'M be a complex schema p-mapping
between schemas S and T'. Let Dg be an instance of S.
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1. Let @ be an SPJ query over T. The data complex-
ity and mapping complexity of computing Q***'¢(Dyg)
with respect to pC'M are PTIME. The data complex-
ity of computing Q*“P'¢(Dg) with respect to pCM is
#P-complete. The mapping complexity of computing
Q'Ple(Dg) with respect to pCM is in PTIME.

2. Generating the by-table or by-tuple core universal
solution for Dg under pCM takes polynomial time
in the size of the data and the mapping. O

Proof We prove the theorem by showing that we can
construct a normal schema p-mapping from pCM and
answer a query with respect to the normal p-mapping.
For each pCM € pCM between source S(s1, ..., Sm) and
target T'(t1,...,tn), we construct a normal p-mapping
pM = (S',T',m) as follows. The source S’ contains all
elements of the power set of {s1,..., s, } and the target
T’ contains all elements of the power set of {t1,...,t,}.
For each complex mapping ¢m € pCM, we construct
a mapping m such that for each set correspondence be-
tween S and T in ¢m, m contains an attribute correspon-
dence between the corresponding set attributes in S’ and
T'. Because each attribute set occurs in one correspon-
dence in cm, m is a one-to-one mapping. The result pM
contains the same number of possible mappings and each
mapping contains the same number of correspondences
as pCM. We denote the result schema p-mapping by
pM. The complexity of data exchange carries over.

Now consider query answering. Since for each possi-
ble mapping cm € pCM, an attribute is involved in at
most one correspondence, query answering with respect
to pC'M gets the same result as with respect to pM and
so the complexity results for normal schema p-mappings
carry over.

Theorem 18. Let pUM be a union schema p-mapping
between a source schema S and a target schema T'. Let
Dg be an instance of S.

1. Let @ be a conjunctive query over T. The problem
of computing Q***'¢(Dg) with respect to pUM is in
PTIME in the size of the data and the mapping;
the problem of computing Q'*?'¢(Dg) with respect
to pUM is in PTIME in the size of the mapping and
#P-complete in the size of the data.

2. Generating the by-table or by-tuple core universal
solution for Dg under pUM takes polynomial time
in the size of the data and the mapping. O

Proof Answering a query with respect to a union map-
ping can be performed by first answering the query on
each element mapping, and then taking the union of the
results. Thus, the complexity of answering a query with
respect to a union mapping is the same as the complexity
of answering a query with respect to a normal mapping.
When we have union probabilistic mappings, in each step
where we need to answer a query with respect to a pos-
sible union mapping, we first answer the query on each

element mapping and then union the results. So the com-
plexity results carry over.

Now consider data exchange for a union probabilistic
schema mapping. In by-table semantics, we can generate
the core universal solution in the same way as with re-
spect to normal mappings, except that we consider each
element mapping in the union mapping when we gener-
ate the target for a source tuple. Thus, we can generate
the by-table core universal mapping in polynomial time.

In by-tuple semantics, we need a new representa-
tion of p-databases, called union disjunctive p-databases,
which we define as follows. Let R be a relation schema
where there exists a set of attributes that together form
the key of the relation and an attribute group. Let pU DY,
be a set of tuples of R, where some of the tuples are at-
tached with probabilities. We say that pUDY, is a union
disjunctive p-database if (1) for each key value that oc-
curs in pUDY,, the probabilities of the tuples with this
key value sum up to 1, (2) the value of group in each tu-
ple with a probability is unique, and the value of group
in each tuple without probability is the same as that of
a tuple with probability and with the same key value. In
a union disjunctive p-databases, we consider tuples with
the same key value as disjoint, and tuples with the same
group value as unioned. Specifically, let keyq,...,key,
be the set of all distinct key values in pDY,. For each
i € [1,n], we denote by d; the number of tuples whose
key value is key; and who has a probability. Then, pD},
can define a set of II;"_;d; possible databases, where each
possible database (D, Pr(D)) contains n tuples t1, ..., t,
with probabilities and m tuples without probabilities,
such that (1) for each ¢ € [1,n], the key value of ¢; is
key,; (2) a tuple without probability is in D if and only
if it shares the same value of group with one of ¢4, ..
and (3) Pr(D) = II", Pr(t;).

We generate the by-tuple core universal solution with
respect to a union probabilistic mapping in the same way
as for normal p-mappings, except that for each possible
union mapping, we generate a target tuple with respect
to each element mapping, assigning a unique value to
their group attribute and assigning the probability of the
union mapping to one and only one of the target tuples.
Thus, we can generate the by-tuple core universal map-
ping in polynomial time as well. O

R e

Theorem 19. Let cpM be a conditional schema p-mapping
between S and T'. Let Dg be an instance of S.

1. Let @ be an SPJ query over T. The problem of com-
puting Q*“P'*(Dg) with respect to cpM is in PTIME
in the size of the mapping and #P-complete in the
size of the data.

2. Generating the by-tuple core universal solution for
Dg under ¢pM takes linear time in the size of the
data and the mapping. O

Proof By-tuple query answering with respect to condi-
tional schema p-mappings is essentially the same as that
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with respect to normal p-mappings, where for each source
tuple, we first decide which condition it satisfies and then
consider applying possible mappings associated with that
condition. Thus, the complexity of by-tuple query-answering
with respect to normal schema p-mappings carries over.
Constructing the core universal by-tuple solution is
also essentially the same as that with respect to normal
p-mappings, where for each source tuple s we first decide
which condition it satisfies and then generate target tu-
ples that are consistent with s and the possible mappings
associated with that condition. Thus, the complexity of
by-tuple data-exchange with respect to normal schema
p-mappings carries over as well. O



