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ABSTRACT
Data fusion aims at resolving conflicts between different sources
when integrating their data. Recent fusion techniques find the truth
by iterative Bayesian analysis that reasons about trustworthiness of
sources and copying relationships between them. Providing expla-
nations for such decisions is important, but can be extremely chal-
lenging because of the complexity of Bayesian analysis and that of
the iterations during decision making.

This paper proposes two types of explanations for data-fusion
results: snapshot explanations target casual users, taking the pro-
vided data and any other decision inferred from the data as evi-
dence; comprehensive explanations target advanced users, taking
only the provided data as evidence. We propose techniques that
can efficiently generate correct and compact snapshot explanations
and comprehensive explanations. Experimental results show that
(1) the explanations we generate are correct, (2) our techniques can
significantly reduce the sizes of the explanations, and (3) we can
generate the explanations efficiently.

1. INTRODUCTION
Despite the abundance of useful information on the Web, differ-

ent sources often provide conflicting data, some being out-of-date,
inaccurate, or erroneous. Data fusion (see [3] for a survey) aims at
resolving conflicts between different sources in data integration and
creating consistent and clean data that best reflect the real world.
An easy way to resolve conflicts is to apply voting, choosing the
value provided by the most sources. This often leads to incorrect
results, so recently proposed fusion techniques consider in addition
trustworthiness of the providers and copying relationships between
them in finding the truth [2, 7, 9, 10, 12, 19, 20, 22, 23, 24].

In real systems, simply presenting data fusion results is often in-
adequate; curious users ask not only “what” but also “why”. They
may raise questions such as “Why is this value provided by fewer
sources but considered true?”, “Why is this source considered as a
copier of that one?”, and “Why is that source considered as more
accurate?”. Only when we are able to provide convincing expla-
nations, the users would believe us. Administrators of data fusion

Table 1: Data from five sources on the affiliation of five DB
researchers. False values are in italic font.

S1 S2 S3 S4 S5

Stonebraker MIT berkeley MIT MIT MS
Dewitt MSR msr UWisc UWisc UWisc

Bernstein MSR msr MSR MSR MSR
Carey UCI at&t BEA BEA BEA
Halevy Google google UW UW UW

systems may wish to see such explanations as well, so they can
diagnose and debug potential problems.

Explaining such decisions is not only important, but also ex-
tremely challenging, especially to non-technical users. There are
two reasons for this. First, Bayesian analysis is conducted for de-
cision making, including deciding the true value, judging whether a
source copies from another, and so on. Unlike conventional (provenance-
style) reasoning, Bayesian analysis considers all alternate decisions,
computes the inverse probability of the observed fact conditioned
on each decision, and then computes the probability of each alter-
native accordingly. We are not aware of any existing techniques
that explain Bayesian reasoning ([11, 17] explained evidence prop-
agation in Bayesian networks, which is different). As we illustrate
next, a detailed description of the underlying Bayesian analysis can
be hard to understand and frustrating to most users.

EXAMPLE 1.1. Consider data provided by five sources on the
affiliation of five DB researchers (Table 1). Source S1 provides all
correct affiliations; S2 provides affiliation names in lower case; S4

and S5 copy from S3, while S5 provides the value for Stonebraker
independently. We are able to find all correct affiliations if we apply
the Bayesian analysis in [9], but a curious user may ask “Why
is UCI considered as the correct affiliation of Carey?” Suppose
we know the accuracy of the sources and probability of copying
between sources (we explain in Sec.2 how we may obtain them), a
detailed (and possibly agonizing) explanation can go like this.

Three values are provided for Carey’s affiliation.
If UCI is true, then we reason as follows.

1. Source S1 provides the correct value. Since S1 has accuracy
.97, the probability that it provides this correct value is .97.

2. Source S2 provides a wrong value. Since S2 has accuracy
.61, the probability that it provides a wrong value is 1−.61 =
.39. If we assume there are 100 uniformly distributed wrong
values in the domain, the probability that S2 provides the
particular wrong value AT&T is .39

100
= .0039.

3. Source S3 provides a wrong value. Since S3 has accuracy .4,
the probability that it provides BEA is 1−.4

100
= .006.1

1We have omitted some repeating words and some details that would appear
in the explanation to save space.



4. Source S4 either provides a wrong value independently or
copies this wrong value from S3. It has probability .98 to
copy from S3 so probability 1 − .98 = .02 to provide the
value independently. In this case, its accuracy is .4 so the
probability that it provides BEA is .006.

5. Source S5 either provides a wrong value independently or
copies this wrong value from S3 or S4. It has probability
.99 to copy from S3 and probability .99 to copy from S4,
so probability (1 − .99)(1 − .99) = .0001 to provide the
value independently. In this case, its accuracy is .21, so the
probability that it provides BEA is .0079.

Thus, the probability of our observed data conditioned on UCI be-
ing true is .97 ∗ .0039 ∗ .006 ∗ .006.02 ∗ .0079.0001 = 2.1 ∗ 10−5.

If AT&T is true, then ...; thus, the probability of our observed
data conditioned on AT&T being true is 9.9 ∗ 10−7.

If BEA is true, then ...; thus, the probability is 4.6 ∗ 10−7.
If none of the provided values is true, then ...; thus, the probabil-

ity is 6.3 ∗ 10−9.
After we apply the Bayesian analysis, assuming the same a-priori

probability for each value in the domain (100+1=101 values) to be
true, we compute the probability of UCI being true conditioned on
our observed data as 2.1∗10−5

2.1∗10−5+9.9∗10−7+4.6∗10−7+6.3∗10−9∗98 =

.91; that of AT&T as .04; that of BEA as .02; and that of one of
the 100 − 2 = 98 unprovided values as .0003. Thus, UCI has the
highest probability to be the true value.

Obviously, such an explanation is too difficult for ordinary users
to understand; even for technical users, the explanation gives too
many details unnecessarily and is extremely verbose.

A much simpler explanation might be “(1) S1, the provider of
value UCI, has the highest accuracy, and (2) copying is very likely
between S3, S4, and S5, the providers of value BEA”. For many
users, this explanation is much easier to understand and the level
of detail is adequate (further details can be provided on demand).
However, automatically extracting such key evidence from the de-
tailed description of the Bayesian analysis is not easy. 2

The second reason for the challenging nature of data-fusion ex-
planations is that there can be different components in data fusion,
such as quantifying trustworthiness of data sources, detecting copy-
ing between sources, and finding true values. These tasks are inter-
dependent; advanced fusion techniques iteratively perform them
until the results converge. Existing work on explaining iterative
reasoning (e.g., [21]) provides exhaustive answers, such as finding
all extraction patterns that contribute to an extracted tuple in data
extraction, but does not show how to explain the iterative process.

EXAMPLE 1.2. Continue with Ex.1.1. Given the proposed ex-
planation, an advanced user may further wonder (1) why S1 is con-
sidered as having a higher accuracy than other sources and (2) why
copying is considered likely between S3 − S5.

While we can certainly continue answering these questions, care-
ful choices need to be made in the explanations. Taking the copy-
ing between S3 and S4 as an example, the explanation might be
“S3 and S4 share all five values, and especially, make the same
three mistakes UWisc, BEA, UW; this is unusual for indepen-
dent sources so copying is likely”. This explanation would further
trigger explanation for why UWisc, BEA, UW are considered as
wrong. However, recall that one of the reasons for BEA to be con-
sidered as wrong (i.e., UCI being correct) is the copying between
S3 − S5, so we end up with a loop.

On the other hand, if we provide provenance-style explanation
and trace back the iterations (see Fig.1), the explanation again can
be verbose, containing a lot of highly similar fragments. 2

In this paper we propose two types of explanations. Targeting
casual users who wish to understand a decision, we provide snap-
shot explanations that take the provided data and any other decision
inferred from the data as evidence. The explanation in Ex.1.1 is a
snapshot explanation, as the two reasons it gives are both inferred
from the data. Targeting advanced users or system administrators,
we provide comprehensive explanations that take only the provided
data as evidence and explain any decision that requires inference
over the data. Essentially, we study how to find and organize evi-
dence that we would show in each type of explanation.

We have three goals in producing such explanations. First, the
evidence we show should be consistent with the Bayesian analysis
and gives the correct reasoning. For example, Bayesian analysis
considers various alternate choices and reasons about them using
all available positive and negative evidence, so showing only the
positive evidence to explain a decision is inappropriate. Second,
rather than providing a big chunk of evidence that contains every
detail of the Bayesian reasoning but can be long and overwhelming,
it is desirable that the evidence lists are succinct. Third, explana-
tions are often generated at runtime on users’ demand; thus, the
evidence should be selected efficiently.

To the best of our knowledge, this paper is the first that aims at
explaining data fusion decisions made by iterative Bayesian analy-
sis. In particular, we make the following contributions.

1. We propose explaining our decisions for casual users by snap-
shot explanations, which list both positive and negative evi-
dence considered in Bayesian analysis. We show how we
can efficiently shorten such explanations by categorizing and
aggregating evidence and selectively removing unimportant
evidence.

2. We propose explaining our (snapshot) explanations2 for ad-
vanced users by comprehensive explanations, which construct
a DAG (directed acyclic graph) where children nodes repre-
sent evidence for the parent nodes according to the iterations.
We show how we can efficiently shorten such explanations
by considering only the critical points at which we change
our decision in the iterations.

3. We show through experiments on real-world data that (1) we
generate correct explanations, (2) our techniques can signif-
icantly reduce the size of the explanations, and (3) our algo-
rithms are efficient.

Note that our techniques focus on finding the evidence that we
would show to the user in the explanations. Making the evidence
list correct and succinct is critical for generating intuitive explana-
tions and has been a goal for explanation in the literature [14, 15].
On the other hand, how to present the evidence (i.e., which words
and layout to use, whether to use text, tables, or graphs) to im-
prove the understandability of the explanations is beyond the scope
of this paper. We have implemented our techniques for snapshot
explanations in the SOLOMON system3 [8] and demonstrated a text
presentation and a graph presentation.

Although our techniques are based on existing work on data fu-
sion [2, 7, 9, 12, 19, 20, 23, 24], none of the core ideas, includ-
ing how to explain iterative Bayesian analysis and how to effi-
ciently shorten such explanations, has been discussed in any pre-
vious work. In addition, our ideas for snapshot explanations can
be applied in explaining other Bayesian-analysis results (e.g., clas-
sification), and our ideas for comprehensive explanations can be
applied in explaining iterative reasoning involving confidence or
probabilities (e.g., iterative information extraction such as [1]).
2Lord Byron wrote in Don Juan “I wish he would explain his explanation.”
3http://www2.research.att.com/∼yifanhu/SourceCopying/



In the rest of the paper, Sec.2 defines our problem and briefly re-
views data fusion techniques. Sec.3-4 describe generation of snap-
shot and comprehensive explanations. Sec.5 presents experimental
results. Sec.6 discusses related work and Sec.7 concludes.

2. PROBLEM DEFINITION
We first formally define our explanation problems and then briefly

review advanced data fusion techniques.

2.1 Problem definition
This paper studies how to explain iterative Bayesian analysis.

We consider two types of explanations. First, Snapshot explana-
tions are targeted to casual users who wish to understand a decision
and would believe us on any other decision. The explanation can
thus take any decision in fusion other than the one for explanation
as supporting evidence.

DEFINITION 2.1 (SNAPSHOT EXPLANATION). Given a deci-
sion W in data fusion, a snapshot explanation for W takes the pro-
vided data and all decisions in fusion except W as evidence and
explains how Bayesian analysis leads to decision W . 2

Second, comprehensive explanations are targeted to advanced
users who wish to understand also how we come to other conclu-
sions required as evidence for explaining a decision. The explana-
tion thus takes only the data as evidence. Such explanations can
also help system administrators understand and debug the results.

DEFINITION 2.2 (COMPREHENSIVE EXPLANATION). Given
a decision W in data fusion, a comprehensive explanation for W
takes only the provided data as evidence and explains how iterative
Bayesian analysis leads to decision W . 2

Ex.1.1 illustrates a snapshot explanation, and the comprehensive
explanation would further explain why S1 is considered more ac-
curate and why copying is considered likely between S3 − S5.

For example, as illustrated in the introduction, the snapshot ex-
planation for “Why is v the correct value even though it is pro-
vided by fewer sources than v′” can be “(1) many providers of v′

copy it from the same source and (2) v is provided by several high-
accuracy independent sources.”. However, the comprehensive ex-
planation needs to go further and explain why some providers of v′

are considered as copiers and why some providers of v are consid-
ered as more accurate and independent.

Before we describe how we generate such explanations, we first
briefly review advanced techniques for data fusion.

2.2 Preliminaries for data fusion
Consider a set D of data items, each representing a particular

aspect of a real-world object (e.g., the affiliation of a researcher)
and having a single true value. Also consider a set S of data sources
that provide data on these data items. For the same item, different
sources may provide conflicting values. Data fusion aims at finding
the true value for each item according to the provided values.

Advanced fusion techniques [2, 7, 9, 12, 19, 20, 23, 24] find the
true value on data item D ∈ D by conducting Bayesian analysis: it
computes the probability that the observed data on D are provided
conditioned on each value in D’s domain being true, and selects
the value that corresponds to the highest probability. In probability
computation, it considers the following aspects.

1. Source accuracy: The probability that a source S provides a
true value depends on its accuracy: the higher the accuracy,
the higher the probability (similar for providing a particular

false value). The accuracy of S is computed as the average
probability of S’s values being true in [9, 23].

2. Copying relationship: When computing the conditional prob-
ability of our observation, we wish to consider a source only
if it provides an examined value independently of any other
source. Copying is considered likely if we observe a lot of
common unpopular data, especially common false values,
since it is typically much less likely for independent sources
to share such data.

There is inter-dependence between truth discovery, copy detec-
tion, and source accuracy; techniques in [2, 9, 12, 20, 23] conduct
iterative computation until the results converge.

In this report we focus on explaining Bayesian analysis for truth
discovery and copy detection.4 We next give more details on Bayesian
analysis for these two types of decisions.
Truth discovery: Let D be a data item and V(D) be the domain
of D. Let ΦD denote our observation on data provided for D and
ΦD(S) denote the observation for source S on D. [9, 23] follow
the Bayes rule, compute for each value v ∈ V(D) the probability
of it being true conditioned on ΦD , and take the value with the
highest probability as the true value. In particular, assuming the
same a-priori probability for each value in V(D) leads to

P (v true|ΦD) =
P (ΦD|v true)P

v′∈V(D) P (ΦD|v′ true)
; (1)

P (ΦD|v true) = ΠS∈SP (ΦD(S)|v true)I(ΦD(S)). (2)

Computation of Eq.(2) considers two aspects. First, computing
P (ΦD(S)|v true) considers the accuracy of S, denoted by A(S):
the higher A(S), the more likely that S provides a true value v. Ac-
curacy A(S) is computed as the average probability of S’s values
being true in [9, 23]. Second, I(ΦD(S)) denotes the probability
of S providing data on D independently of any other source and
downweights copied values (details in [9]). We describe source
copying between a pair of sources in more detail next.
Copying detection: Let Φ be our observation of the data. Let
S → S′ denote that S copies from S′ and S⊥S′ denote that S
and S′ do not copy from each other; then, P (S → S′) + P (S′ →
S)+P (S⊥S′) = 1 (no-loop copying is assumed in previous work;
that is, S → S′ and S′ → S do not happen together). Techniques
in [2, 7, 9] follow the Bayes rule and compute the probability of
each case conditioned on Φ. For example,

P (S⊥S′|Φ) =
βP (Φ|S⊥S′)

αP (Φ|S → S′) + αP (Φ|S′ → S) + βP (Φ|S⊥S′)
.

(3)
Here, 0 < α < .5 is the a-priori probability of a source copying
from another and β = 1 − 2α. Assuming independence between
different data items, the probability of observation Φ can be com-
puted as the product of the probabilities on each data item D ∈ D.
In particular, let S 6→ S′ denote that S does not copy from S′ and
ΦD(S) denote the observation for S on D, then

P (Φ|S⊥S′) = ΠD∈DP (ΦD(S)|S 6→ S′)P (ΦD(S′)|S′ 6→ S);(4)
P (Φ|S → S′) = ΠD∈DP (ΦD(S)|S → S′)P (ΦD(S′)|S′ 6→ S).(5)

When computing P (ΦD(S)|S 6→ S′), [7] considers (but is not
limited to) three aspects: the probability of S providing data on
D, that of S providing a particular value v, and that of S using a
particular format f . The product of these probabilities is taken:
4Explaining source accuracy is not the focus of this paper as the computa-
tion does not involve Bayesian analysis; as an example, the explanation can
show the histogram of the probabilities of the values from the source.



P (ΦD(S)|S 6→ S′) = P (ΦD(S) 6= ∅|S 6→ S′)

·P (val(ΦD(S)) = v|S 6→ S′) · P (fmt(ΦD(S)) = f |S 6→ S′).(6)

Here, val(ΦD(S)) denotes the observed value and fmt(ΦD(S))
denotes the observed format. Details of how each probability is
computed can be found in [7].

When computing P (ΦD(S)|S → S′), note that a copier may or
may not copy on a particular data item, and if it copies the value,
it may or may not keep the same format. [7] considers the selec-
tivity (probability of copying on a data item), denoted by s, and the
probability of keeping the same format in copying, denoted by k
(0 ≤ s, k ≤ 1 and [7, 9] discussed how to set them). As an exam-
ple, computation of the conditional probability of S providing the
same value as S′ but using a different format considers the possi-
bility that S provides the data item independently (with probability
1 − s) and the possibility that S copies the data item from S′ but
changes the format (with probability s(1− k)); thus,

P (ΦD(S)|S → S′) = (1− s)P (ΦD(S)|S → S′, D not copied)
+ s(1− k)P (fmt(ΦD(S)) = f |S → S′, D not copied). (7)

As another example, computation of the conditional probability of
S providing a different value only considers the possibility that S
provides the data item independently (with probability 1− s):

P (ΦD(S)|S → S′) = (1− s)P (ΦD(S)|S → S′, D not copied). (8)

Consider the probability that S provides a rare data item, pro-
vides an unpopular value (e.g., a particular false value), or uses an
unpopular format. When S′ has the same behavior, this probability
conditioned on S → S′ can be much higher than that conditioned
on S 6→ S′, so such observations serve as strong evidence for copy-
ing. We next illustrate the Bayesian reasoning by an example.

EXAMPLE 2.3. Continue with Ex.1.1 and consider the copying
relationship between S1 and S2. We observe that they share neither
rare data items nor false values (all values they share are correct)
and they use different formats, so copying is unlikely. With α =
.25, s = k = .8, the Bayesian analysis goes as follows.

We start with computation of P (Φ|S1⊥S2), which requires com-
puting P (ΦD(S1)|S1 6→ S2) and P (ΦD(S2)|S2 6→ S1) for each
D ∈ D (Eq.(4)). All values S1 provides are correct. Assuming
we have decided that the accuracy of S1 is .97, then the proba-
bility for S1 to provide a true value is .97. On the other hand,
as S1 provides all data items and uses consistent formatting, the
probability of providing a particular item and that of using the
format on a data item are both 1. Thus, for each D ∈ D we
have P (ΦD(S1)|S1 6→ S2) = 1 ∗ .97 ∗ 1 = .97 (Eq.(6)). In
a similar way, assuming S2 has accuracy .61 and there are 100
uniformly distributed false values, we compute P (ΦD(S2)|S2 6→
S1) = .61 if S2 provides a true value on D, and P (ΦD(S2)|S2 6→
S1) = 1−.61

100
= .0039 if S2 provides a false value on D. Thus,

P (Φ|S1⊥S2) = (.975) ∗ (.613 ∗ .00392) = 3 ∗ 10−6.
Next consider P (Φ|S1 → S2), which requires computing

P (ΦD(S1)|S1 → S2) and P (ΦD(S2)|S2 6→ S1) for each D ∈ D
(Eq.(5)). Source S1 shares three values with S1 and they are all
correct. According to Eq.(7), the probability for such data item D is
P (ΦD(S1)|S1 → S2) = (1−.8)∗.97+.8∗(1−.8)∗1 = .354. On
the other hand, S1 provides two different values from S2 and each
of them is true. According to Eq.(8), the probability for such data
item D is P (ΦD(S2)|S1 → S2) = (1 − .8) ∗ .97 = .194. Thus,
P (Φ|S1 → S2) = (.3543 ∗ .1942)∗ (.613 ∗ .00392) = 5.8∗10−9.

Similarly, we have P (Φ|S2 → S1) = 2.3 ∗ 10−7. According to
Eq.(3), P (S1⊥S2|Φ) = .5∗3∗10−6

.5∗3∗10−6+.25∗5.8∗10−9+.25∗2.3∗10−7 =
.96, so no-copying is very likely. 2

Table 2: List explanation for no-copying between S1 and S2.
Score Evidence

3.2 S1 provides different values from S2 on 2 data items
Among the data items for which S1 and S2 providePos 3.06
the same value, S1 uses different formats for 3 data items
The a-priori belief is that S1 is more likely to be.7
independent of S2

Neg .06 S1 provides the same true value for 3 data items as S2

Note again that the reasoning in the example is how a detailed
description of the Bayesian analysis would look like (many details
already skipped) for a no-copying decision. Obviously it is very
hard to understand for non-technical users and can even be over-
whelming for people who understand Bayesian analysis. We next
show how we can explain such decisions more elegantly.

3. EXPLAINING THE DECISION
We start with snapshot explanations: given a decision W , we

take the data and all decisions made at the convergence round ex-
cept W as input and explain W . We first describe how we generate
the explanation that strictly follows the Bayesian analysis (Sec.3.1-
3.2). We then show how we can shorten the explanation by orders
of magnitude (Sec.3.3-3.4).

3.1 List explanation
Bayesian analysis considers all possible choices, collects evi-

dence and computes the probability for each of them. To explain
a decision W , rather than showing only the positive evidence for
W , we shall show for each alternative W ′ that the accumulated ev-
idence for W is stronger than that for W ′. We thus propose the
following form for a snapshot explanation.

DEFINITION 3.1 (LIST EXPLANATION). The list explanation
for a decision W versus an alternative W ′ is in the form (L+,L−),
where L+ is the list of positive evidence for W and L− is the list
of negative evidence for W (but positive for W ′). Each evidence
l ∈ L+ ∪ L− is associated with a positive score, denoted by s(l).

A snapshot explanation for W contains a set of list explanations,
one for each alternative choice W ′. 2

Ideally, a list explanation should be correct and complete. A list
explanation is correct if the sum of the scores of positive evidence
is higher than that for negative evidence. A list explanation is com-
plete if all evidence considered in the Bayesian analysis is included.
Obviously, a complete list explanation must be correct as it strictly
reflects the Bayesian analysis; however, as we show soon, such
a list explanation is often huge in size and can be overwhelming
to users. In Sec.3.4 we show how we can relax the completeness
requirement and shorten a list explanation, such that the result is
correct and comparable to the complete list explanation.

EXAMPLE 3.2. Table 2 shows the list explanation for “S1 does
not copy from S2” versus “S1 copies from S2” in Ex.1.1. There
are three pieces of positive evidence showing no-copying and one
piece of negative evidence showing copying. The list explanation is
correct: the total positive score 3.2 + 3.06 + .7 = 6.96 is higher
than the total negative score .06. The list explanation is also com-
plete, showing all evidence considered in the Bayesian analysis. 2

3.2 Generating list explanations
We next describe how we generate a list explanation strictly fol-

lowing the Bayesian analysis. We illustrate the main idea on no-
copying between S and S′.



Table 3: List explanation for no-copying between S1 and S2

strictly following the Bayesian analysis.
Score Evidence

1.6 S1 provides a different value from S2 on Stonebraker
1.6 S1 provides a different value from S2 on Carey

S1 uses a different format from S2 although shares1.0
the same (true) value on Dewitt
S1 uses a different format from S2 although sharesPos 1.0
the same (true) value on Bernstein
S1 uses a different format from S2 although shares1.0
the same (true) value on Halevy
The a-priori belief is that S1 is more likely to be.7
independent of S2

No-copying: Recall that between two sources there are three possi-
ble relationships: S⊥S′, S → S′ and S′ → S. To explain S⊥S′,
we shall show P (S⊥S′|Φ) > P (S → S′|Φ) and P (S⊥S′|Φ) >
P (S′ → S|Φ); thus, the snapshot explanation includes two list ex-
planations. According to the Bayesian analysis (Eq.(3)), we shall
show βP (Φ|S⊥S′) > αP (Φ|S → S′) for the former and similar
for the latter. As we assume independence of data items, we need
to show the following (derived from Eq.(4-5)).

ΠD∈DP (ΦD(S)|S 6→ S′) > ΠD∈DP (ΦD(S)|S → S′) ·
α

1− 2α
.

(9)
Recall that we compare the sum of the scores for positive and

negative evidence; we thus rewrite (9) as follows.X
D∈D

ln P (ΦD(S)|S 6→ S′) >
X

D∈D
ln P (ΦD(S)|S → S′)+ln

α

1− 2α
.

(10)
Each data item D is involved in the computation of both sides

of the inequality. We decide if it supports S 6→ S′ or S → S′

by comparing P (ΦD(S)|S 6→ S′) and P (ΦD(S)|S → S′). If
the former is higher, D is positive evidence for no-copying with
score ln P (ΦD(S)|S 6→S′)

P (ΦD(S)|S→S′) ; if the latter is higher, D is negative evi-

dence with score ln P (ΦD(S)|S→S′)
P (ΦD(S)|S 6→S′) ; otherwise, D is not evidence

for either decision. In other words, we rewrite Eq.(10) asX
D∈D,P (ΦD(S)|S 6→S′)>P (ΦD(S)|S→S′)

ln
P (ΦD(S)|S 6→ S′)

P (ΦD(S)|S → S′)

>
X

D∈D,P (ΦD(S)|S 6→S′)<P (ΦD(S)|S→S′)

ln
P (ΦD(S)|S → S′)

P (ΦD(S)|S 6→ S′)

+ ln
α

1− 2α
. (11)

Finally, in Eq.(11) ln α
1−2α

represents the evidence coming from
the a-priori belief (α, β are not involved in any other part of Eq.(11)).
This evidence is negative if α > 1− 2α (α > 1

3
).

Obviously, the explanation is complete and correct: P (S⊥S′|Φ)
> P (S → S′|Φ) if and only if the scores of positive evidence sum
up to be higher than those of negative evidence.

EXAMPLE 3.3. Consider explaining S1⊥S2 in Ex.1.1. The strict
list explanation for S1 6→ S2 is shown in Table 3.

For item Stonebraker, denoted by D1, S1 provides a different
value from S2. Recall from Ex.2.3 that P (ΦD1(S1)|S1 6→ S2) =
.97 and P (ΦD1(S1)|S1 → S2) = .194. Thus, D1 serves as posi-
tive evidence for no-copying with score ln .97

.194
= 1.6. We compute

the same score for item Carey.
For item Dewitt, denoted by D2, S1 provides the same value

as S2 but uses a different format. Recall that P (ΦD2(S1)|S1 6→
S2) = .97 and P (ΦD2(S1)|S1 → S2) = .354. Thus, D2 also
serves as positive evidence and the score is ln .97

.354
= 1.0. Note

that there are actually two pieces of sub-evidence hidden in this

evidence, one about providing the same value and serving as neg-
ative evidence, and one about using a different format and serving
as positive evidence; we discuss how to separate them in Sec. 3.3.
We compute the same score for items Bernstein and Halevy.

Finally, the a-priori belief when α = .25 serves as positive evi-
dence with score | ln .25

1−2∗.25
| = .7.

In total, there are 6 pieces of positive evidence and no negative
evidence. Note that by equation transformation and evidence ex-
traction, the explanation is already much simpler than the descrip-
tion of Bayesian analysis in Ex.2.3. 2

We now summarize how we explain a Bayesian decision W .

1. List each alternative choice other than W .
2. Generate a list explanation for each choice in four steps.

(a) Write and expand the inequation that we need to show
according to the Bayesian analysis.

(b) Take the logarithm of each side of the inequation.
(c) For each involved element (e.g., data item in case of

copying detection), compare the probability computed
on each side and decide if it serves as positive or nega-
tive evidence.

(d) Handle evidence from the constant term.

We next briefly discuss how we generate explanations for other
types of decisions according to this algorithm.
Copying detection: When we explain S → S′, we shall show
P (S → S′|Φ) > P (S⊥S′|Φ) and P (S → S′|Φ) > P (S′ →
S|Φ) using two list explanations in a similar fashion.
Truth discovery: Consider a data item D and we wish to explain
why a particular value v is decided to be correct. Here, each alter-
native choice is another value v′ ∈ V(D), v′ 6= v (Step 1). For
each v′, we generate a list explanation showing P (v true|ΦD) >
P (v′ true|ΦD) (Step 2); thus, the explanation consists of |V(D)|−
1 list explanations (in fact, we can generate a single list explanation
for all values that are not provided by any source). After expanding
the inequation according to Eq.(1-2) and taking the logarithm (Step
2a-2b), we haveX
S∈S

I(ΦD(S)) ln P (ΦD(S)|v true) >
X
S∈S

I(ΦD(S)) ln P (ΦD(S)|v′ true).

(12)

For each element S ∈ S, as I(ΦD(S)) appears on both sides, we
only need to compare ln P (ΦD(S)|v true) and ln P (ΦD(S)|v′ true)
(Step 2c). If S is a provider of v, the former is larger and S serves
as positive evidence; if S is a provider of v′, the latter is larger and
S serves as negative evidence; if S provides another value, they are
the same and S is neither positive nor negative evidence. Finally, if
S is a copier, the score would be much lower than otherwise.

3.3 Evidence categorization and aggregation
The current explanation generation algorithm lists each data item

as a piece of evidence. Since there can be a lot of data items in gen-
eral, the explanation can be long and overwhelming. We observe
from Table 3 that a lot of evidence can actually look the same ex-
cept that they are on different data items; a natural thought is to
categorize such evidence and present the aggregated evidence. The
question is then how to categorize the evidence wisely without end-
ing up with too many categories. We do so in two steps.
Evidence separation: Since our observation on a data item D con-
sists of three aspects: existence of the item, provided value(s), and
used format(s) (see Eq.(6)), we first divide a piece of evidence into
three, one for each aspect. This enables categorization on each as-
pect instead of on combinations of different aspects.



Table 4: List explanation for no-copying between S1 and S2

after evidence separation.
Score Evidence

1.6 S1 provides a different value from S2 on Stonebraker
1.6 S1 provides a different value from S2 on Carey
1.02 S1 uses a different format from S2 on Dewitt

Pos 1.02 S1 uses a different format from S2 on Bernstein
1.02 S1 uses a different format from S2 on Halevy

The a-priori belief is that S1 is more likely to be.7
independent of S2

.02 S1 and S2 share the same true value on Dewitt
Neg .02 S1 and S2 share the same true value on Bernstein

.02 S1 and S2 share the same true value on Halevy

Evidence separation requires the score on a data item D to be
split for each different aspect, denoted by scoreext(D), scoreval(D),
and scorefmt(D) for our case. A careless approach would lead to
computing these scores as

scoreext(D) = ln
P (ΦD(S) 6= ∅|S 6→ S′)

P (ΦD(S) 6= ∅|S → S′)
; (13)

scoreval(D) = ln
P (val(ΦD(S)) = v|S 6→ S′)

P (val(ΦD(S)) = v|S → S′)
; (14)

scorefmt(D) = ln
P (fmt(ΦD(S)) = f |S 6→ S′)

P (fmt(ΦD(S)) = f |S → S′)
. (15)

However, in this way the three scores do not sum up to the overall
score for D, because P (ΦD(S)|S → S′) 6= P (ΦD(S) 6= ∅|S →
S′) · P (val(ΦD(S)) = v|S → S′) · P (fmt(ΦD(S)) = f |S → S′)

(the equation holds though for P (ΦD(S)|S 6→ S′)).
Instead, we compute (1) sc1 = scoreext(D), (2) sc2 = scoreext(D)

+ scoreval(D), and (3) sc3 = scoreext(D) + scoreval(D) +
scorefmt(D), from which we can then infer scoreext(D), scoreval(D),
and scorefmt(D).

Consider the case of both sources providing the same value v as
an example. First, sc1 can be computed by Eq.(13), where

P (ΦD(S) 6= ∅|S → S′)

= (1− s)P (ΦD(S) 6= ∅|S → S′, D not copied) + s. (16)

Second, sc2 can be computed as follows.

sc2 = scoreext(D) + scoreval(D)

= ln
P (ΦD(S) 6= ∅, val(ΦD(S)) = v|S 6→ S′)

P (ΦD(S) 6= ∅, val(ΦD(S)) = v|S → S′)
; (17)

P (ΦD(S) 6= ∅, val(ΦD(S)) = v|S → S′) = s + (1− s)

· P (ΦD(S) 6= ∅, val(ΦD(S)) = v|S → S′, D not copied). (18)

Third, sc3, which sums up all scores on D, is obviously the final
score on D; that is, ln P (ΦD(S)|S 6→S′)

P (ΦD(S)|S→S′) .
A positive score shows that the specific aspect serves as pos-

itive evidence for no-copying and vice versa. Note that even if
D as a whole serves as positive evidence, it is not necessary that
scoreext(D), scoreval(D), and scorefmt(D) are all positive. As
shown in Ex.3.3, item Dewitt (D2) serves as positive evidence.
However, we compute scoreext(D2) = ln 1

.2∗1+.8
= 0, scoreval(D2)

= ln .97
.2∗.97+.8

− 0 = −.02, scorefmt(D2) = 1− (−.02)− 0 =
1.02. Thus, providing D2 is neither positive nor negative evidence,
sharing the same value is negative evidence for no-copying, and
using different formats is positive evidence. Being able to expose
such hidden evidence is an extra benefit of evidence separation.
The evidence list after separation is shown in Table 4.

Categorization: Now for each aspect we can categorize according
to why the aspect of a data item serves as positive or negative ev-
idence given the feature of the data. Take the value aspect as an

Algorithm 1: GenerateList(S, S′,D)
Input : S, S′ sources, D data items
Output : (L+

1 ,L−1 ) and (L′+2 ,L′−2 ) as explanation for S⊥S′

Score[1 : 2][1 : asp][1 : cat] = 0;1
Count[1 : 2][1 : asp][1 : cat] = 0; // asp is the number of aspects2

and cat is the number of categories for each aspect

// Collect, categorize, and aggregate evidence
foreach D ∈ D do3

COLLECTEVIDENCE(S, S′, D, Score, Count);4

// Generate explanation
L+

1 = L−1 = L′+2 = L′−2 = ∅;5
foreach d = 1 : 2 do6

foreach i = 1 : asp do7
foreach j = 1 : cat do8

if Score[d][i][j] > 0 then9
Add GENERATEEXPLANATION(S, S′, d, i, j,10
Score[d][i][j], Count[d][i][j]) to L+

d ;

else if Score[d][i][j] < 0 then11
Add GENERATEEXPLANATION(S, S′, d, i, j,12
−Score[d][i][j], Count[d][i][j]) to L−d ;

SORT(L+
1 ); SORT(L−1 ); SORT(L′+2 ); SORT(L′−2 );13

return (L+
1 ,L−1 ), (L′+2 ,L′−2 );14

Algorithm 2: CollectEvidence(S, S′,D, Score, Count)
foreach i = 1 : asp do1

// Evidence collection
s1 = COMPUTESCORE(D, S → S′, i);2
s2 = COMPUTESCORE(D, S′ → S, i);3

// Evidence categorization
cat1 ← CATEGORIZEREASON(D, S → S′, i);4
cat2 ← CATEGORIZEREASON(D, S′ → S, i);5

// Evidence aggregation
if s1 6= 0 then6

Score[1][i][cat1]← Score[1][i][cat1] + s1;7
Count[1][i][cat1] + +;

if s2 6= 0 then8
Score[2][i][cat2]← Score[2][i][cat2] + s2;9
Count[2][i][cat2] + +;

example. There are four categories: (1) different values; (2) shar-
ing false value; (3) sharing true value; (4) providing a value that is
different but more likely to be provided if the source is a copier but
provides this item independently (e.g., if S copies high-accuracy
data from S′ but all of its independently provided data are wrong,
then for a value different from S′’s, S has a probability of 1 to
provide a wrong value conditioned on it being a copier of S′ but
a lower probability otherwise). Among these categories, the first
forms positive evidence for no-copying and the others form neg-
ative evidence. Note that sharing false value, which is typically
strong evidence, and sharing true value, which is typically weak
evidence, are essentially the same, but by separating them we can
emphasize significant evidence. We have similar categories for the
existence aspect and the format aspect.

Aggregation: We show the framework of our algorithm with cate-
gorization and aggregation in Algorithm 1. The algorithm uses two
arrays, Score and Count, to store the sum of the scores and the
count of the involved instances. The first dimension of the array
corresponds to each direction (S 6→ S′ or S′ 6→ S); the second
dimension corresponds to each aspect in probability computation;



Table 5: Score and count for each category in Ex.3.4.
Aspect Category1 Category2 Category3 Category4
Exist 0 0 0 0
Value 3.2, 2 0 -.06, 3 0

Format 3.06, 3 0 0 0

and the third dimension corresponds to each category of reasons.
The algorithm proceeds in two phases.

1. The evidence collection phase (Lines 3-4) finds evidence from
each data item. It invokes function COLLECTEVIDENCE
(Algorithm 2), which for each aspect first computes the score
(Lines 2-3), then decides the category of the reasons accord-
ing to the data (being different, or the same true value, or
the same false value, etc.) (Lines 4-5), and finally adds the
scores and counts the instances for the corresponding cate-
gory (Lines 6-9).

2. The explanation generation phase (Lines 5-14) decides for
each category if the evidence is positive or negative, gener-
ates the verbal explanation, and adds it to the corresponding
explanation list. It finally sorts the lists in decreasing order
of the scores and returns the result list explanation.

EXAMPLE 3.4. Continue with Ex.3.3. The result of Algorithm 2
is shown in Table 5 (corresponding to Table 4). Take D2 as an
example. Line 2 computes scoreext(D2) = 0, scoreval(D2) =
−.02 and scorefmt(D2) = 1.02, as we have shown. For the
value aspect, S1 and S2 provide the same true value so Line 4
puts it in Category 3; for the format aspect, S1 and S2 use different
formats so falls in Category 1. Lines 6-7 aggregate the evidence,
finds 2 pieces of positive evidence (not including the a-priori belief
evidence) and 1 piece of negative evidence. Then, Algorithm 1 gen-
erates explanation for each cell (Line 10) and sorts them, resulting
in the list explanation of Table 2.

Recall that without categorization and aggregation, we would
show 5 pieces of positive evidence (Table 3), each for a data item,
and hide the fact that sharing 3 values actually serves as negative
evidence for no-copying.

With evidence categorization and aggregation, the amount of ev-
idence is not determined by the number of data items, but by the
number of aspects and categories. In our experiments, the evidence
lists can be shortened by orders of magnitude. We next show com-
plexity of this algorithm.

PROPOSITION 3.5. Let |D| be the number of provided data items,
asp be the number of aspects, and cat be the maximum number of
categories in each aspect. GENERATELIST generates a correct and
complete explanation in time O(|D|+ asp · cat · log(asp · cat)). 2

PROOF. Evidence categorization requires one scanning of the
data items and takes time O(|D|). Explanation generation takes
time O(asp · cat). Sorting up to asp · cat pieces of evidence takes
time O(asp · cat · log(asp · cat)).

To summarize, we decide categories manually by enumerating
various aspects that are considered in probability computation, such
as Eq.(6), and various reasons why a particular aspect can serve as
positive or negative evidence given the feature of the data. We then
categorize and aggregate evidence accordingly. The same principle
applies to other decisions as well. For example, for truth discovery
decisions, there are two aspects: accuracy of the source and copy-
ing of the source from others; for the former aspect, there are two
reasons for positive evidence: provided by an accurate source and
provided by a less accurate source.

3.4 List shortening
Although evidence aggregation can significantly reduce the amount

of evidence, the result lists can still contain twenty or thirty pieces
of evidence, depending on the number of categories. We can further
remove “unimportant” evidence, illustrated as follows.

EXAMPLE 3.6. Consider the following list explanation (we show
only scores).

L+ = {1000, 500, 60, 2, 1};
L− = {950, 50, 5}.

Obviously, removing the evidence whose scores are below 100
still shows that the positive evidence is much stronger than the neg-
ative evidence. However, if we further remove the negative evidence
with score 950, it gives the wrong impression that there is no nega-
tive evidence. On the other hand, if we further remove the positive
evidence with score 500, it gives the wrong impression that the pos-
itive evidence is only slightly stronger. 2

Note that once we remove some evidence, the list explanation
is not complete any more. Instead, we wish the explanation to be
correct and comparable to the complete explanation. Before we
formally define what we mean by “comparable”, we first describe
a few simple ways of list shortening. Such strategies include show-
ing only top-k evidence, and showing only evidence whose score
is above a given threshold θ. However, using the same k and θ
everywhere may cause over-shortening for some instances, where
the explanation is incorrect, and under-shortening for some other
instances, where further shortening will generate a shorter but still
correct and comparable explanation. We next propose two better
solutions. Both of them remove evidence from the end of the list,
as typically the lower is the score, the less important is the evi-
dence; on the other hand, each follows a different principle of what
is considered as comparable to the complete list explanation.

3.4.1 Tail cutting
First, given a shortened list explanation, we can guess the bound

of the accumulated scores: the minimal accumulated score for all
positive evidence happens when each removed positive evidence
has score 0; the maximal score for negative evidence happens when
each removed negative evidence has a score as high as the lowest
remaining score for negative evidence. If even in such a worst case,
the remaining positive evidence is still stronger, we consider the ex-
planation as comparable. In Ex.3.6, if we remove the last negative
evidence and inform the user that “there is 1 more piece of nega-
tive evidence with lower score”, then the removed score is at most
50, so the negative evidence (total score 950 + 50 + 50 = 1050)
is still weaker. We can further remove the last 3 pieces of posi-
tive evidence and the positive evidence is still stronger (total score
1000+500 = 1500 > 1050). According to this intuition, we shall
solve the following optimization problem.

DEFINITION 3.7 (TAIL-CUTTING PROBLEM). Consider the
following list explanation (we show only scores):

L+ = {x1, x2, . . . , xn};
L− = {y1, y2, . . . , ym}.

The tail-cutting problem minimizes s + t, 1 ≤ s ≤ n, 1 ≤ t ≤
m, under the constraint

sX
i=1

xi >
tX

j=1

yj + yt(m− t). 2 (19)

In this definition, constraint (19) compares the minimum positive
score, obtained when all removed scores are 0, with the maximum
negative score, obtained when the m−t pieces of removed evidence



Algorithm 3: CUTTAIL(L+,L−)
Input : List explanation (L+,L−)
Output : s, t
X ←

Pn
i=1 xi; Y ←

Pm
j=1 yj ; s0 ← n; t0 ← m;1

// Find the minimum s

while
Ps0

i=1 xi > Y do2
s0 −−;3

min← s0 + m; s← s0; t← m;4

// Try each t and find the minimum s + t
while X > Y do5

t0 −−;6
Y ← Y + (yt0 − yt0+1)(m− t0);7
while

Ps0
i=1 xi < Y and s0 < n do8

s0 + +;9

if s0 + t0 < min then10
min← s0 + t0; s← s0; t← t0;11

return s, t;12

all have the maximum possible score yt, and so guarantees that the
shortened list is comparable to the complete explanation.

Algorithm CUTTAIL (Algorithm 3) proceeds in three steps. First,
Lines 2-4 iteratively try s = n, n − 1, . . . , as far as

Ps
i=1 xs >Pm

j=1 yj ; the resulting s is the minimum when we do not remove
any negative evidence (t = m) and serves as the starting point for
the next step. Second, Lines 5-7 iteratively try t = m, m− 1, . . . ,
as far as

Pn
i=1 xi >

Pt
j=1 yj + yt(m− t) (at this point removing

any more negative evidence cannot satisfy constraint (19), even if
we add back all positive evidence). For each t, Lines 8-9 increase s
when needed to guarantee constraint (19), and Lines 10-11 record
s + t. Finally, Line 12 returns the s and t with minimal s + t.
Obviously, CUTTAIL finds the optimal solution.

PROPOSITION 3.8. Algorithm CUTTAIL solves the TAIL-CUTTING
problem in time O(m + n). 2

PROOF. Finding the minimum s takes time O(n). Finding min-
imum s + t decreases t from m to 1 in the extreme case, and in-
creases s from 1 to n in the extreme case, so takes time O(m +
n).

EXAMPLE 3.9. Consider applying CUTTAIL to the full list ex-
planation in Ex.3.6. The algorithm first removes the last 3 pieces of
evidence from L+; at this point, 1000 + 500 > 950 + 50 + 5 and
s + t = 2 + 3 = 5. It then tries t = 2, where increasing s is not
needed (1000 + 500 > 950 + 50 + 50 ∗ 1); so s + t = 2 + 2 = 4.
When it tries t = 1, even if all positive evidence is added back, we
still have 1000 + 500 + 60 + 2 + 1 < 950 + 950 ∗ 2, so it stops.
Finally, it returns s = 2, t = 2 as the result. 2

3.4.2 Difference keeping
In our second method, we consider the shortened list as com-

parable to the complete one if it keeps the difference between the
accumulated scores for the two evidence lists; this corresponds to
dividing both the numerator and the denominator of Eq.(3) by a
constant. In other words, we wish that the sum of the scores for
removed positive evidence is nearly the same as that for removed
negative evidence. Meanwhile, we wish to make the lists as short
as possible, equivalent to making the sum of the removed scores as
large as possible. Thus, we solve the following problem.

DEFINITION 3.10 (DIFFERENCE-KEEPING PROBLEM). Consider
the same list explanation as in Defn.3.7. Let X =

Pn
i=s+1 xi and

Algorithm 4: KEEPDIFF(L+,L−)
Input : List explanation (L+,L−)
Output : s, t
X0 ←

Pn
i=1 xi; Y0 ←

Pm
j=1 Yj ; X ← 0; Y ← 0;1

min← β1
β2

; s← n; t← m; s0 ← n; t0 ← m;2
l← xn ≤ ym?0 : 1;// l records the list to consider next3

while s0 > 1, t0 > 1 do4
if l = 0 then5

X ← X − xs0 ; s0 −−;6
if X ≤ Y + yt0 and X + xs0 > Y + yt0 then7

l = 1;8

else9
Y ← Y − yt0 ; t0 −−;10
if Y ≤ X + xs0 and Y + yt0 > X + xs0 then11

l = 0;12

if X0 −X > Y0 − Y then13
score =

|X−Y |+β1
max(X,Y )γ+β2

;14
if score < min then15

min = score; s = s0; t = t0;16

return s, t;17

Y =
Pm

j=t+1 yj (1 ≤ s ≤ n, 1 ≤ t ≤ m). The difference-
keeping problem minimizes

|X − Y |+ β1

max(X, Y ) + β2
, (20)

where 0 < β1, β2 ≤ min{mini∈[1,n]{xi}, minj∈[1,m]{yj}} are
small positive numbers, under the constraint

sX
i=1

xi >
tX

j=1

yj . 2 (21)

In the objective function (20), we use β1 to guarantee a non-
zero numerator such that we do not necessarily choose a solution
where X = Y but s and t are large. We use β2 to guarantee a
non-zero denominator such that we do not necessarily shorten the
list when there does not exist any s and t to make X and Y close
enough. Instead of max(X, Y ), we can use max(X, Y )γ to con-
trol how much we wish to emphasize small list length; in our exper-
iments, we did not observe a noticeable difference when we range γ
from 1 to 2. Constraint (21) guarantees correctness of the explana-
tion. Note that one may add other constraints such as giving upper
bounds of X and Y to guarantee that at most a given fraction of
evidence is removed, or use max(X, Y )γ , γ > 0, to control how
much we wish to emphasize small list length.

A naive way of solving this problem tries each combination of
m and n and can take time O(mn(m + n)). We now sketch an
algorithm that solves the problem in only linear time. Recall that
we remove evidence from the end of the lists, so we call a removed
subset of evidence a suffix sublist. The key idea is that for each suf-
fix sublist L, there is a key evidence k(L) in the other list, such that
the longest suffix without k(L) has lower or the same accumulated
score as L and the shortest suffix with k(L) has higher accumu-
lated score than L. Then, for each suffix, we only need to examine
these two suffix sublists from the other list. Consider Ex.3.6 and
the suffix list {5} from L−. Its key evidence in L+ is the evidence
with score 60. The longest suffix without this evidence, {2, 1},
has a lower score than 5, and the shortest suffix with the evidence,
{60, 2, 1}, has a higher score. Obviously, any other suffix sublist
in L+ has a higher difference from {5} than these two.

According to this intuition, Algorithm KEEPDIFF (Algorithm 4)
scans L+ and L− bottom-up (Line 2 sets the cursors s0 and t0 to



Table 6: Applying KEEPDIFF in Ex.3.6.
Rnd Remove from L+ Remove from L− Difference Objective

0 ∅ ∅ 0 1
1

= 1

1 {1} ∅ 1 2
2

= 1

2 {1, 2} ∅ 3 4
4

= 1

3 {1, 2} {5} 2 3
6

= .5

4 {1, 2} {5, 50} 52 53
56

= .95

5 {1, 2, 60} {5, 50} 8 9
64

= .14

n and m respectively). At the beginning, the algorithm starts with
removing evidence with the lowest score (Line 3). Then, in each
round, it decides the evidence to remove at the next round as fol-
lows: it picks evidence from the same list until reaching the key ev-
idence of the next suffix (the current suffix plus the next evidence)
of the other list (Lines 5-12). In addition, each round checks con-
straint (21), computes the objective function, and records the solu-
tion if its value is lower than the recorded lowest value (Lines 13-
16). This process continues until we reach the first evidence of a
list. Algorithm KEEPDIFF is optimal, shown as follows.

PROPOSITION 3.11. Algorithm KEEPDIFF solves the DIFFERENCE-
KEEPING problem in time O(m + n). 2

PROOF. For each s0 (similar for t0), the algorithm finds the t0
with the minimum difference of accumulated removed scores. If we
further increase t0, |X − Y | increases and max(X, Y ) decreases,
so the new value of the objective function will increase. If we fur-
ther decrease t0 and assume Y increases by ∆, then |X − Y | in-
creases by ∆ and max(X, Y ) increases by ∆ as well, so the new
value of the objective function will again increase. This proves the
optimality of the algorithm.

The algorithm at best reduces s0 from n to 1 and t0 from m to 1
interleavingly, so takes time O(m + n).

EXAMPLE 3.12. Continue with Ex.3.6. Table 6 shows removed
evidence and the value of the objective function in each round;
here, we set β1 = β2 = 1. We start with L+, as it contains the
lowest score. Initially, the next suffix sublist in L− is {5}, and its
key evidence in L+ has score 60; thus, we pick scores 1 and 2 first
and then switch to list L−. We continue till reaching the first el-
ement of L−. The result of Round 5 is optimal, even though its
difference is not the smallest. 2

Extensions: We next discuss several extensions of the DIFFERENCE-
KEEPING problem. First, in some cases we may wish to emphasize
small list length and be tolerant with a slightly larger difference.
We can change the objective function to|X − Y |+ β1

max(X, Y )γ + β2
, (22)

where we use γ > 0 to balance score difference and list length:
a large γ emphasizes small list length and a small γ emphasizes
small difference. Note that Algorithm KEEPDIFF may not obtain
the optimal results when γ 6= 1 and we will need to try different
combinations of s and t for finding the optimal solution.

Second, if we consider the shortened list is comparable to the
complete list when it keeps the ratio of the accumulated scores of
the two lists, we can either adjust the objective function, or set a
ratio range as a constraint. We skip the details.

In practice, we apply both CUTTAIL and KEEPDIFF and choose
the solution with shorter lists (i.e., minimal s+t). Our experiments
show that these strategies can further shorten the lists by 51%.

EXAMPLE 3.13. Continue with explaining no-copying between
S1 and S2 for the running example. For evidence in Table 2, CUT-
TAIL would remove the last two pieces of positive evidence, while

KEEPDIFF would not remove any evidence. We thus choose the re-
sults of CUTTAIL. The final explanation can go like this. “There are
3 pieces of positive evidence for no-copying, where the strongest is
that S1 provides 2 different values from S2 (with score 3.2). There
is 1 piece of negative evidence for no-copying: S1 provides the
same true value on 3 data items as S2 (with score .06). The posi-
tive evidence is stronger so no-copying is likely.” 2

4. EXPLAINING THE EXPLANATION
We next consider generating comprehensive explanations, where

we take only provided data as evidence. Again, we start with show-
ing how we generate the full explanation according to the iterative
Bayesian analysis (Sec.4.1), and then describe how we shorten the
explanation efficiently (Sec.4.2)

4.1 DAG explanation
A comprehensive explanation needs to in addition explain every

“evidence” inferred over the data. A natural presentation for such
an explanation is the DAG structure, where each node explains a
decision, and the children are the evidence.

DEFINITION 4.1 (DAG EXPLANATION). The DAG explana-
tion for a decision W is a DAG in the form of (N,E, R), where
(1) each node in N represents a decision and its list explanations,
(2) each edge in E indicates that the decision of the child node is
evidence for that of the parent node, and (3) there is a single node
R that has no parent and represents the decision W . 2

Similar to snapshot explanations, an ideal DAG explanation should
also be correct and complete. It is correct if (1) the explanation
represented by each node is correct, and (2) each child supports its
parents as positive evidence. It is complete if for every node, each
of its positive evidence that is inferred from the data corresponds to
a child node. Note that although an explanation on a node contains
both positive evidence and negative evidence, we do not expand the
DAG for negative evidence, since the opposite of negative evidence
will only further strengthen our decision.

Consider explaining “UCI is more likely than BEA to be the cor-
rect affiliation of Carey” in the motivating example. As we have
shown in Ex.1.2, careless generation of the DAG can cause loops.
Similar to explaining “WHY” according to provenance [4], we ex-
plain by tracing the decisions from the last round of iterations back
to the first round. In particular, we start with generating the root
node for the decision at the convergence round and its children for
the supporting evidence at the same or the previous round. We re-
peat until all leaf nodes can be inferred directly from the data. We
call the result a full explanation DAG. Obviously, a full explanation
DAG is both correct and complete.

EXAMPLE 4.2. Fig.1 shows the full explanation DAG for our
example. The root node has two children, showing that we make
this decision at the convergence round, the 11th round, because we
detect copying between S3 − S5 at the 11th round, and compute a
higher accuracy for S1 than S3 at the 10th round. We make both
of these two decisions based on our decisions at the 10th round
that UWisc, UW and BEA are wrong. Among them, the deci-
sion on BEA at Round 10 is made for the same two reasons as
at Round 11; the decisions on UWisc and UW, on the other hand,
are made because of copying between S3 −S5 and no-copying be-
tween S1 −S2 (the reasoning is that these two values are provided
by three sources with copying and the correct values are provided
by two independent sources), both decided at the 10th round. While
copying between S3 − S5 is detected for the same reasons as at
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Figure 1: Full explanation DAG for the decision “UCI is more
likely than BEA to be the affiliation of Carey” (represented by
D4 : P (UCI) > P (BEA)). The triangle between S3, S4 and
S5 represents copying between them; A(S1) > A(S3) repre-
sents that S1 has a higher accuracy than S3; D3 : MSR repre-
sents that MSR is the correct affiliation for Bernstein.

Round 11, no-copying between S1 − S2 is decided based on the
decisions at the 9th round that the shared values MSR, MSR, and
Google (for D2, D3, D5 respectively) are all correct. We decide
that MSR is correct for D3 purely from the data, because no other
value is provided on D3, so the node is a leaf node. We further
expand the DAG for other decisions.

When we trace back to the 4th round, we show that we decide
copying between S3−S5 only because we decided at Round 3 that
UWisc and UW are wrong, which again are decided because of
copying between S3 −S5 and no-copying between S1 −S2. When
we trace back to the 1st round, we show that we made decisions
on UWisc and UW because the no-copying probability between
S1 − S2 is higher than that between S3 − S5, which in turn is
inferred from the raw data because S1 and S2 share fewer values
(initially we assume the same probability for each value to be true).
We can thus terminate. 2

4.2 Shortening DAG explanations
A full explanation DAG is often huge because some parts can

be repeated many times; for example, in Fig.1 the subgraphs for
Round 4 to 9 are exactly the same. We wish to reduce the size of the
DAG by removing the repeated subgraphs. We observe that if the
same decision is made at two consecutive rounds, their supporting
positive evidence are typically the same. The only difference is the
exact scores, which may change slightly between rounds, but such
small changes are not significant in understanding the decision. We
thus shorten the explanation by explaining a decision only at its
critical round, the last round when we change our decision; in other
words, we explain how we initially make this decision. Such a
DAG is called a critical-round DAG.
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Figure 2: Critical-round DAG. Not being part of the DAG,
italic-font nodes indicate the critical round for a decision and
dashed lines show the reasons at the critical round.

EXAMPLE 4.3. Continue with Ex.4.2. Fig.2 shows the critical-
round DAG for our example. It shows that the decision is first made
at Round 4 (before that we wrongly decide that BEA is correct)
based on (1) copying between S3 − S5, decided at Round 4, and
(2) that the accuracy of S1 is higher than S3, decided at Round
4. The decision of copying between S3 − S5 is originally made at
Round 1 according to the high overlap between these sources; it
does not have any child because it is purely inferred from the data.
The decision that S1 has a higher accuracy is originally made at
Round 2 (although in that round the difference is not significant for
believing that UCI is correct), based on the decisions at Round 2
that UWisc and UW, are false. These two decisions are originally
made at Round 1, again based on the decisions at Round 1 that the
no-copying probability between S1−S2 is higher than that between
S3 − S5, inferred from the raw data. Critical-round DAGs can be
significantly smaller; the example DAG includes only 6 nodes. 2

Critical-round DAGs are both correct and complete if we con-
sider only the critical rounds, but one may argue that a decision
may have different evidence lists at the critical round and the round
that we explore. We can thus enrich the DAG by listing appear-
ing and disappearing reasons at the exploration round compared
with the critical round, and further expand the DAG for these rea-
sons. We call such a DAG an enriched critical-round DAG and it
is both correct and complete. Our experiments show that there are
typically very few appearing reasons and even fewer disappearing
reasons, but expanding them can increase the size of the DAG a lot.

We next formally define the critical-round DAG, which we pro-
pose to use as the comprehensive explanation.

DEFINITION 4.4 (CRITICAL-ROUND EXPLANATION DAG).
Let W be a decision at Round n. The critical round of W , denoted
by r(W, n), satisfies the following conditions: (1) W is made in
Round r(W, n) ≤ n, (2) r(W, n) = 1, or ¬W is made in Round
r(W, n)− 1.

An explanation DAG is called a critical-round DAG if for each
node N and its represented decision W at Round n, N ’s children
represent positive evidence for W at the critical round r(W, n). 2

4.3 DAG construction
We next describe how we construct a critical-round DAG. Obvi-

ously, this would require recording the decisions we make in each
round. Online construction of explanations requires high efficiency,
but this can be challenging for two reasons. First, there can be
many rounds before convergence and constructing a DAG would
very often require importing the decisions and restoring the status



for each round. Second, for each node in the DAG we need to de-
cide the critical round; inefficient algorithms can require importing
decisions at different rounds back and forth. We solve the problem
by pre-generating the explanation and the evidence list for each de-
cision offline, and storing them in a database.
DB creation: For each round r we create two tables in the database:
Explanationr(decision, explanation) for the explanation, and
Evidencer(decision, evidence) for the evidence list. For each
table, we index on decision. Consider a decision W made in
the r-th round. If the decision changes from the previous round,
there is an entry in Explanationr for its explanation and an entry
in Evidencer for each of its evidence.

For the purpose of supporting diagnosis queries, we also gen-
erate identity tuples (W, W ) in Evidencer if Round r is not any
critical round of decision W . Such identity tuples guarantee that
all decisions in Round r appear in at least one of the tables for
Round r, so making it easy to find decisions at a particular round;
they also allow easy querying on all evidence for a decision or all
decisions affected by a piece of evidence by joining the tables.

Suppose truth discovery converges in l rounds. Recall that in
each round, we perform copying detection, truth discovery, and
source accuracy computation. Accordingly we divide decisions
in each round into 3 layers (illustrated by Fig.1). We create the
database in 3l iterations. Starting from the bottom, each time we
consider a window of 3 consecutive layers and restore the status.
We then generate the explanation for each decision W at the top
layer, Layer k, as follows.

1. Decide if the decision has been changed since the previous
window (Layer k − 3) or if the decision is initial (k ≤ 3).

2. If W is initial or changed, generate the explanation and the
evidence list. Insert the results into the two tables for the
corresponding round.

DAG construction: With the database, online explanation genera-
tion can be very efficient.

1. We construct the DAG from the root, representing W at the
convergence round r.

2. For each node, we (1) query the Explanation from the r-th
table to previous tables until finding its explanation (which
must be from the critical round for this r-th round decision)
and (2) query the corresponding Evidence table for the sup-
porting evidence.

3. For each supporting evidence, we repeat Steps 2-3 to gener-
ate a child node and construct the subgraph.

PROPOSITION 4.5. Let l be the number of rounds and d be the
total number of decisions. The database can be constructed in time
O(dl). Let n be the size of the result DAG. The DAG explanation
can be constructed in time O(nl). 2

5. EXPERIMENTAL RESULTS
We now describe experimental results on real-world data show-

ing that (1) the list of evidence we generate for the explanations are
correct (2) our techniques can significantly reduce the amount of
evidence; and (3) we can generate the explanations efficiently.

5.1 Experimental setting
We experimented on the AbeBooks data set, which was extracted

in 2007 from AbeBooks.com by searching computer-science books5.
In the data set there are 894 bookstores (data sources), 1265 books,
5We thank authors of [23] for providing us the data.

and 24364 listings, each containing attributes ISBN, name, and
often authors. According to a previous study, a naive voting for
deciding the correct list of authors on this data set obtains an accu-
racy of only .71, while the advanced fusion technique in [9] obtains
an accuracy of .89.

We generate explanations for four types of decisions: I. truth
discovery: true value for the name and author list of each book; II.
copying detection: copying or no-copying between sources whose
Jaccard similarity on data items (intersection over union) is at least
.1 (there are 3210 such pairs); III. copy direction: direction of
copying between sources with detected copying (there are 1552
such pairs); IV. copy pattern: copying by object or copying by at-
tribute [7] between sources with detected copying (there are 1340
detected patterns). We consider all for snapshot explanations, and
I and II (only copying) for comprehensive explanations.

For snapshot explanation, we compare the following list short-
ening strategies: (1) TOPK: showing only evidence with the top-k
scores; (2) LARGE: showing only evidence whose score is larger
than 5; (3) TOPKLARGE: showing only the top-k evidence whose
score is larger than 5; (4) CUTTAIL: applying Algorithm CUT-
TAIL; (5) KEEPDIFF: applying Algorithm KEEPDIFF with β1 =
β2 = .01; and (6) SHORTEN: trying both CUTTAIL and KEEP-
DIFF, and selecting the results with shorter lists. By default, we
apply SHORTEN.

For comprehensive explanation, we compare full explanation DAG,
critical-round DAG, and enriched critical-round DAG. We also gen-
erated trigger explanation DAGs, where we show only triggering
reasons at the critical round (i.e., those that do not hold or are not
strong enough in the previous round). By default, we used critical-
round DAGs.

We used Java and experimented on a WindowsXP machine with
2.66GHz Intel CPU and 3.48GB of RAM. We hosted the database
using MySQL.

5.2 Snapshot explanations
Shortening strategies: Fig.3 shows results of generated snapshot
explanations for the four types of decisions. We have five obser-
vations. (1) Evidence categorization and aggregation shortens the
evidence list by an order of magnitude on average. (2) List short-
ening further shortens the evidence list by 51% on average. (3) Ev-
idence categorization and aggregation can reduce the size of ex-
planations more for copying detection than for truth discovery, be-
cause the amount of raw evidence for the former, decided by the
number of values provided by the sources, is much larger than that
for the latter, decided by the number of sources providing the data
item. (4) The final amount of evidence is the largest for decisions
of Type I as each explanation involves multiple list explanations,
then for those of Type II as each explanation involves two list ex-
planations, and last for Type III and IV as each involves a single
list explanation. (5) All evidence lists are correct.

As a case study, we observed that the largest explanation without
shortening is for a Type II decision. The original explanation con-
tains two lists, in total containing 4927 pieces of evidence. One can
imagine how verbose the explanation could be if we give a detailed
description of the Bayesian analysis. After categorization and ag-
gregation, there are still 29 pieces of evidence in total. After list
shortening the number further drops to 15.

We next compare different list shortening strategies. We first
consider decisions of copying detection (Type II). Table 7 shows
the average length of the result lists and Fig. 4 shows the shortening
ratio (percentage of the size of the shortened lists over that of the
full lists) for each method. We have four observations. (1) LARGE
and TOP15LARGE obtain the shortest evidence lists; however, this
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Table 7: Average number of evidence in the explanations gen-
erated by each shortening strategy.
FULL TOP15 LARGE TOP15LARGE CUTTAIL KEEPDIFF SHORTEN
11.0 10.5 4.5 4.5 7.4 7.2 5.7

Table 8: Errors in snapshot explanations.
ALL TOP20 TOP15 TOP10

TOPK 0 0 0 1
TOPKLARGE 47 47 47 48

is at the price of introducing errors (the sum of scores for positive
evidence is no larger than that for negative evidence) in the ex-
planations as they remove evidence without checking. As shown
in Table 8, TOPKLARGE introduces errors for 47 (2.2%) pairs of
sources; TOPK in itself introduces only a few errors, but on the
other hand, in reduces the list length only slightly. (2) SHORTEN
obtains slightly longer evidence lists than LARGE and TOP15LARGE,
but does not introduce any error. (3) CUTTAIL and KEEPDIFF ob-
tain similar results in terms of the average length of the result lists;
however, the former is better at shortening short lists (5-14 evi-
dence) and the latter is better at shortening long lists (15-29 evi-
dence). SHORTEN combines them and obtains shorter lists. (4) Fi-
nally, most methods have a lower shortening ratio for longer lists,
whereas LARGE and TOPKLARGE have consistent ratio for lists of
various length, and are able to significantly shorten very short lists
(0-4 evidence), but this again is at the price of making errors.

We next consider decisions of Type III and IV; Fig.5 shows the
length of evidence lists generated by different shortening strategies.
The results are in general consistent with our observations for deci-
sions of Type II and we have the following additional observations.
First, before shortening, the list explanations for decisions of Type
IV are short; since CUTTAIL is better at shortening short lists (see
Fig.4), the results of SHORTEN are affected more by CUTTAIL.
Second, for decisions of Type III and IV, each evidence typically
has a high score, so LARGE and TOP15LARGE under-shorten and
generate longer lists than SHORTEN.
Efficiency: Table 9 shows efficiency of generating explanations
for each type of decisions. We observe that (1) explanations can
be generated very quickly online, and (2) the list shortening strate-
gies introduce a very small overhead. Note that collecting evidence
for decisions of Type II-IV all requires scanning provided data and
took 62.3 ms on average. Note also that collecting evidence for
truth discovery decisions requires computing copying probability
for each shared value and thus took longer time.

5.3 Comprehensive explanations
Shortening strategies: The iterative Bayesian analysis on the ex-
perimental data set took 9 rounds. Fig.6 plots the size of the critical-
round DAGs versus the critical round. We observe that for truth dis-
covery decisions, those that do not change since the first round typ-
ically have a small DAG (with less than 15 nodes), whereas those
changed at later rounds can have much larger DAGs (the largest
DAG has 1035 nodes). In contrast, for copying detection decisions,
the DAGs for decisions not changed since the first round have only

Table 9: Runtime of explanation generation.
(In ms) I. Truth II. Copy III. Direction IV. Pattern

Evid Collection 350.3 62.3
Categorization .08 31.2 8.8 .03

Shortening .12 .01 .02 .01

1 node (copying detection in the first round is based purely on pro-
vided data). Despite the fact that copying decisions typically re-
quire more inferred evidence than truth discovery decisions, the
former typically have smaller DAGs than the latter; this is because
a DAG for a copying decision often has only one node (the root)
representing a copying decision, but a DAG for a truth discovery
decision can often have several such nodes.

Fig.7(a) compares the sizes of different types of DAGs for truth
discovery decisions. We have four observations. (1) Most full
DAGs either have only 1 node (69%), or have over 1000 nodes
(30%), meaning that once a decision is not purely supported by
provided data, the full explanation DAG is typically huge. (2) Most
critical-round DAGs are small as they show only evidence at the
critical rounds: 72.4% of the DAGs have 1 node, 92.6% have less
than 10 nodes, and only 1 has more than 1000 nodes. (3) Trigger
DAGs are even smaller (94.4% are of size 1) because they show
only trigger evidence; however, they can miss important evidence.
As shown in Fig.7(b), typically the later rounds at which the de-
cisions are made, the higher percentage of evidence is missing.
(4) Finally, enriched critical-round DAGs can be much larger than
critical-round DAGs. We observe that on average there are .75 ap-
pearing evidence for decisions not changed since the first round,
and nearly 0 appearing evidence for other decisions, and nearly 0
disappearing evidence for all decisions. However, explaining such
additional evidence at a late round can significantly increase the
size of the DAGs: 25.9% of the DAGs are of size larger than 10
and 15% have more than 1000 nodes.

Efficiency: Fig.8(a) compares the efficiency of generating compre-
hensive explanations from the database and directly from our log
files. Constructing explanation DAGs from a database was very ef-
ficient: on average it took only 0.3 second and in the worst case
it took 22 seconds. DAG construction from files on average took
283.5 times as long as that from a database. For DAGs with up to
10 nodes, using the database reduced runtime by 3 orders of mag-
nitude; even for DAGs of size over 100, using the database reduced
runtime by more than 1 order of magnitude.

Fig.8(b) reports database creation time. We finished creating the
database in 8.4 hours and the size of the database is 766MB. It is
acceptable given that it is an offline process. We observe that pop-
ulating tables for the first round took the longest time (4.6 hours),
because most decisions are made at that round; starting from the
third round, each round took less than half an hour. We also observe
that generating explanation and evidence for accuracy comparison
decisions took much longer time than other types of decisions, be-
cause there are many more such decisions in each round. Finally, it
took 55 hours to create a database for constructing full explanation
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Figure 6: Distribution of sizes of critical-
round DAGs.
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Figure 7: Size of comprehensive explana-
tions.
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Figure 8: Efficiency of generating compre-
hensive explanations.

DAGs (13.7GB), as we need to generate explanation and evidence
for each decision at each round; this further shows the huge over-
head for generating full explanation DAGs.

6. RELATED WORK
Generating provenance (or lineage) information to facilitate un-

derstanding of data management and data integration results has
received recent interest in the database community. Techniques
have been proposed for explaining results for queries [4, 5, 14,
18], workflows [6], schema mappings [13], and information extrac-
tion [15, 21]. We are unaware of any existing work on explaining
data fusion results. The following characteristics of our techniques
distinguish our work from previous works.

First, we need to explain results from Bayesian reasoning, where
one of our key contributions is evidence-list shortening. [11, 17]
proposed explaining evidence propagation in Bayesian networks,
but that is different from explaining Bayesian analysis. [14, 15]
discussed reducing the number of returned reasons by applying
constraints and declaring trust on certain data in information ex-
traction. These techniques do not apply in our context; we instead
consider evidence categorization, aggregation and list shortening.

Second, we need to explain results from iterative reasoning. Among
existing work, only [21] considers iterative reasoning: it proposed
querying all extraction patterns that contribute to an extracted tuple
and all tuples that are affected by an extraction pattern over all itera-
tions. By creating an explanation database, we support such queries
in the context of data fusion as well, and we in addition generate
the whole evidence DAG for comprehensive explanation. Finally,
answers to provenance queries are also in the DAG structure and
indexing techniques have been proposed recently for accelerating
query evaluation [16]. Our techniques differ in that we leverage
the repetition in the iterations to reduce the size of the explanation
DAG and use a database to accelerate DAG construction.

7. CONCLUSIONS
In this paper we study explaining data fusion results and focus

on recent techniques that conduct iterative Bayesian analysis. Tar-
geting different types of users, we proposed snapshot explanations

and comprehensive explanations. We showed how we efficiently
generate such explanations and significantly reduce the size of the
explanations. Our solutions are applicable in other applications that
involve Bayesian analysis and iterative reasoning.

Future work includes combining evidence-style explanation with
causality reasoning [18] to improve comprehensive explanation,
applying our ideas in pinpointing important decisions, and improv-
ing data fusion results by seeking user feedback.
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