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Abstract—The Big Data era is upon us: data is being generated,
collected and analyzed at an unprecedented scale, and data-
driven decision making is sweeping through all aspects of society.
Since the value of data explodes when it can be linked and
fused with other data, addressing the big data integration (BDI)
challenge is critical to realizing the promise of Big Data.

BDI differs from traditional data integration in many di-
mensions: (i) the number of data sources, even for a single
domain, has grown to be in the tens of thousands, (ii) many
of the data sources are very dynamic, as a huge amount of
newly collected data are continuously made available, (iii) the
data sources are extremely heterogeneous in their structure,
with considerable variety even for substantially similar entities,
and (iv) the data sources are of widely differing qualities, with
significant differences in the coverage, accuracy and timeliness
of data provided. This seminar explores the progress that has
been made by the data integration community on the topics of
schema mapping, record linkage and data fusion in addressing
these novel challenges faced by big data integration, and identifies
a range of open problems for the community.

I. INTRODUCTION

The Big Data era is the inevitable consequence of our ability

to generate, collect and store digital data at an unprecedented

scale, and our concomitant desire to analyze and extract value

from this data in making data-driven decisions to alter all

aspects of society. Big Data comes with a lot of promises – as

a Dilbert cartoon would have it, “It comes from everywhere.

It knows all.”1

This data is being collected today in a large variety of

domains. Examples include Web text and documents, Web

logs, large-scale e-commerce, social networks, sensor net-

works, astronomy, genomics, medical records, surveillance,

etc.2 Since the value of data explodes when it can be linked

and fused with other data to create a unified representation,

big data integration (BDI) is critical to realizing the promise

of Big Data. For example, to understand habitat utilization and

animal behavior in reaction to external forces such as weather,

marine animal researchers need to combine animal tracking

data with bathymetric, meteorological, sea surface temperature

and animal habitat data.3

BDI differs from traditional data integration (which includes

virtual integration and materialized warehousing) in many

dimensions.

• Volume: Not only can each data source contain a huge

volume of data, but also the number of data sources,

1http://dilbert.com/strips/comic/2012-07-29/
2http://en.wikipedia.org/wiki/Big data
3http://en.wikipedia.org/wiki/Data fusion

even for a single domain, has grown to be in the tens

of thousands.

For example, in the recent work by Dalvi et al. [6], where

they analyze the nature and distribution of structured data

on the Web, they studied many domains (e.g., restaurants,

automotive, libraries, schools, hotels) and showed that

each domain has tens of thousands of sources on the

Web. This is much higher than the number of data sources

considered in traditional data integration.

• Velocity: As a direct consequence of the rate at which

data is being collected and continuously made available,

many of the data sources are very dynamic.

For example, there are many data sources that provide

near real time, continuously changing information about

the stock market, including bid and ask prices, volume of

shares traded, etc. Providing an integrated view of stock

market data across all these data sources is beyond the

ability of traditional methods for data integration.

• Variety: Data sources (even in the same domain) are ex-

tremely heterogeneous both at the schema level regarding

how they structure their data and at the instance level

regarding how they describe the same real-world entity,

exhibiting considerable variety even for substantially sim-

ilar entities.

For schema-level variety, in the recent work by Li et

al. [32], a study of 55 sources in the stock market domain

identified 153 global attributes that are manually matched

from 333 local attributes. The number of providers for

each global attribute observes Zipf’s law, with 13.7%

of the attributes provided by at least one third of the

sources and over 86% of attributes provided by fewer

than 25% of the sources. For instance-level variety, Guo

et al. [20] showed that for business listings, the number

of distinct business names is typically twice as many as

the number of distinct businesses in a zipcode. Similarly,

an early study [34] on Google Base showed that just for

vehicle color, there are over 250 different colors provided

as values, including very specific ones such as “polished

pewter” and “light almond pearl metallic.”

• Veracity: Data sources (even in the same domain) are of

widely differing qualities, with significant differences in

the coverage, accuracy and timeliness of data provided.

For example, the work by Dalvi et al. [6] showed that

with strong head aggregators such as yelp.com, collecting

homepage URLs for 70% restaurants that are mentioned

by some websites required only 10 sources; however, col-

lecting URLs for 90% restaurants required 1000 sources,



and collecting URLs for 95% restaurants required 5000

sources. Similarly, the work by Li et al. [32] showed that

even in the stock market domain, inconsistent values were

provided by different sources for over 80% of the data

items whose values should be fairly stable (such as daily

closing price). This is consistent with the belief that “1 in

3 business leaders do not trust the information they use

to make decisions.” 4

This seminar explores the progress that has been made

by the data integration community on the topics of schema

mapping, record linkage and data fusion (discussed in more

detail below) in addressing these novel challenges faced by

BDI. We do this using illustrative examples that would be of

interest to data management researchers and practitioners. We

also identify a range of open problems for the community in

integrating a galaxy of data sources.

II. TARGET AUDIENCE

The target audience for this seminar is anyone with an

interest in understanding data integration in the Big Data envi-

ronment. In particular, this includes the attendees at database

conferences like ICDE. The assumed level of mathematical

sophistication will be that of the typical conference attendees.

III. SEMINAR OUTLINE

The importance of big data integration has led to a sub-

stantial amount of research over the past few years on the

topics of schema mapping, record linkage and data fusion to

deal with the novel challenges faced by big data integration.

Table I shows a summary of these techniques. Our seminar is

example driven, and organized as follows.

A. BDI: Motivation (10 minutes)

The seminar will start with a variety of real-world examples

illustrating the importance of big data integration, building on

recent work by Dalvi et al. [6] and Li et al. [32].

B. BDI: Schema Mapping (25 minutes)

Schema mapping in a data integration system refers to

(i) creating a mediated (global) schema, and (ii) identifying

the mappings between the mediated (global) schema and the

local schemas of the data sources to determine which (sets of)

attributes contain the same information [41], [3], [1].

Early efforts in integrating a large number of sources

involved integrating data from the Deep Web. Two types

of solutions were proposed. The first is to build mappings

between Web forms (interfaces to query the Deep Web) as a

means to answer a Web query over all Deep Web sources [5].

The second is to crawl and index the Deep Web data [34],

[35]. More recent efforts include extracting and integrating

structured data from Web tables [4], [40] and Web lists [21],

[15].

The number of sources also increases the variety of the

data. Traditional data integration systems require a significant

schema mapping effort before the system can be used, so is

4http://www-01.ibm.com/software/data/bigdata/

obviously infeasible when the heterogeneity is at the BDI

scale. The basic idea of dataspace systems is to provide

best-effort services such as simple keyword search over the

available data sources at the beginning, and gradually evolve

schema mappings and improve search quality over time [16],

[22], [7], [8], [42], [26], [17], [25], [43].

A related notion becoming popular in the Hadoop commu-

nity is “schema on read” which, in contrast to the traditional

approach of defining the schema before loading data (i.e.,

schema on write), gives one the freedom to define the schema

after the data has been stored.5

C. BDI: Record Linkage (25 minutes)

Record linkage refers to the task of identifying records

that refer to the same logical entity across different data

sources, especially when they may or may not share a common

identifier across the data sources [24], [19], [30], [46], [14].

Record linkage has traditionally focused on linking a static

set of structured records that have the same schema. In BDI,

(i) data sources tend to be heterogeneous in their structure and

many sources (e.g., tweets, blog posts) provide unstructured

text data, and (ii) data sources are dynamic and continuously

evolving. These characteristics make record linkage particu-

larly challenging in BDI.

When there are a large number of sources and a large

volume of data, traditional record linkage approaches become

inefficient and ineffective in practice. To address the volume di-

mension, new techniques have been proposed to enable parallel

record linkage using MapReduce. These include techniques for

adaptive blocking [12], [44], [37] and techniques that balance

load among different nodes [29], [28].

When the data sources are dynamic and continuously evolv-

ing, applying record linkage from scratch for each update

becomes unaffordable. To address the velocity aspect, incre-

mental clustering techniques have been proposed to address

this problem [45], [36].

Record linkage between structured and unstructured data

sources arises, e.g., when linking shopping transactions of peo-

ple with tweets or blog posts about their shopping experience.

To address the variety aspect, techniques have been proposed

that tag and match free text to structured data [27].

Finally, in the BDI environment, information is typically

more imprecise and noisy. To address this veracity aspect, a

variety of clustering and linkage techniques that are robust to

noise or evolving values have been proposed [31], [20], [23].

D. BDI: Data Fusion (20 minutes)

Data fusion refers to resolving conflicts from different

sources and finding the truth that reflects the real world [2],

[11]. Unlike schema mapping and record linkage, data fusion

is a new field that has emerged only recently. Its motivation

is exactly the veracity of data: the Web has made it easy to

publish and spread false information across multiple sources

5http://howsoftwareisbuilt.com/2010/01/06/interview-with-amr-awadallah-
cloudera-cto/



TABLE I
SUMMARY OF STATE-OF-THE-ART DATA INTEGRATION TECHNIQUES MEETING CHALLENGES OF BIG DATA.

Schema mapping Record linkage Data fusion

Volume Integrating Deep Web, Adaptive blocking, Online fusion
Web tables/lists MapReduce-based linkage

Velocity Incremental linkage Fusion in a dynamic world

Variety Dataspace systems Linking text to structured data Combining fusion with linkage

Veracity Value-variety tolerant linkage Truth discovery

and so it is critical to separate the wheat from the chaff for

presenting high quality data.

To address such veracity related challenges, techniques

have been proposed to find the single truth from conflicting

values [49], [32], [48], [39], [38], [18], [9], [47] and to find

multiple truths [50]. Such techniques have also been extended

to handle the volume of data (online data fusion [33]), velocity

of data (truth discovery for dynamic data [10]), and variety of

data (combining record linkage and data fusion [20]).

E. BDI: Open Problems (10 minutes)

Finally, we discuss cutting-edge open problems for big data

integration, such as integrating crowdsourcing data, integrating

data from data markets, providing an exploration tool for data

sources, and so on.
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V. CONCLUSIONS

This seminar reviews the state-of-the-art techniques for

data integration in addressing the new challenges raised by

Big Data, including volume and number of sources, velocity,

variety, and veracity. We discuss how close we are to meeting

these challenges and identify many open problems for future

research.
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